Browse Source

[composite-ntt] reconstruct u32 works

composite-ntt
arnaucube 1 month ago
parent
commit
f95f0389cf
3 changed files with 467 additions and 65 deletions
  1. +1
    -0
      arith/src/lib.rs
  2. +269
    -0
      arith/src/ntt_u62.rs
  3. +197
    -65
      arith/src/ntt_u64.rs

+ 1
- 0
arith/src/lib.rs

@ -17,6 +17,7 @@ pub mod tuple_ring;
// mod naive_ntt; // note: for dev only // mod naive_ntt; // note: for dev only
pub mod ntt; pub mod ntt;
pub mod ntt_u62;
pub mod ntt_u64; pub mod ntt_u64;
// expose objects // expose objects

+ 269
- 0
arith/src/ntt_u62.rs

@ -0,0 +1,269 @@
//! This file implements the wrapper on top of the ntt.rs to be able to compute
//! the NTT for non-prime modulus, specifically for modulus 2^64 (for u64).
use crate::ntt::NTT as NTT_p;
// const P0: u64 = 17293822569241362433;
// const P0: u64 = 4611686018427387905;
// const P1: u64 = 4611686018326724609;
const P0: u64 = 8070449433331580929; // max use 1<<62
const P1: u64 = 8070450532384645121;
// const P0: u64 = 0x80000000080001; // max use 1<<55
// const P1: u64 = 0x80000000130001;
// const P0: u64 = ((1u128 << 64) - (1u128 << 28) + 1u128) as u64;
// const P1: u64 = ((1u128 << 64) - (1u128 << 27) + 1u128) as u64;
// const P0: u64 = ((1u128 << 64) - (1u128 << 28) + 1u128) as u64;
// const P1: u64 = ((1u128 << 64) - (1u128 << 27) + 1u128) as u64;
// const P2: u64 = (1 << 60) - (1 << 26) + 1;
#[derive(Debug)]
pub struct NTT {}
impl NTT {
pub fn ntt(
n: usize,
a: &Vec<u64>,
) -> (
Vec<u64>,
Vec<u64>,
// Vec<u64>,
// Vec<u64>,
// Vec<u64>,
// Vec<u64>,
// Vec<u64>,
) {
// TODO ensure that: a_i <P0
// apply modulus p_i
let a_0: Vec<u64> = a.iter().map(|a_i| (a_i % P0 + P0) % P0).collect();
let a_1: Vec<u64> = a.iter().map(|a_i| (a_i % P1 + P1) % P1).collect();
// let a_2: Vec<u64> = a.iter().map(|a_i| (a_i % P2 + P2) % P2).collect();
// let a_3: Vec<u64> = a.iter().map(|a_i| (a_i % P3 + P3) % P3).collect();
// let a_4: Vec<u64> = a.iter().map(|a_i| (a_i % P4 + P4) % P4).collect();
// let a_5: Vec<u64> = a.iter().map(|a_i| (a_i % P5 + P5) % P5).collect();
// let a_6: Vec<u64> = a.iter().map(|a_i| (a_i % P6 + P6) % P6).collect();
let r_0 = NTT_p::ntt(P0, n, &a_0);
let r_1 = NTT_p::ntt(P1, n, &a_1);
// let r_2 = NTT_p::ntt(P2, n, &a_2);
// let r_3 = NTT_p::ntt(P3, n, &a_3);
// let r_4 = NTT_p::ntt(P4, n, &a_4);
// let r_5 = NTT_p::ntt(P5, n, &a_5);
// let r_6 = NTT_p::ntt(P6, n, &a_6);
(r_0, r_1) //, r_2) //, r_3, r_4) //, r_5, r_6)
}
pub fn intt(
n: usize,
r: &(
Vec<u64>,
Vec<u64>,
// Vec<u64>,
// Vec<u64>,
// Vec<u64>,
// Vec<u64>,
// Vec<u64>,
),
) -> Vec<u64> {
let a_0 = NTT_p::intt(P0, n, &r.0);
let a_1 = NTT_p::intt(P1, n, &r.1);
// let a_2 = NTT_p::intt(P2, n, &r.2);
// let a_3 = NTT_p::intt(P3, n, &r.3);
// let a_4 = NTT_p::intt(P4, n, &r.4);
// let a_5 = NTT_p::intt(P5, n, &r.5);
// let a_6 = NTT_p::intt(P6, n, &r.6);
// Garner CRT for two moduli: combine (r1 mod p1, r2 mod p2) -> Z/(p1*p2)
// let inv_p1_mod_p2: u128 = inv_mod_u64(p1 % p2, p2) as u128;
// const INV_P1_MOD_P2: u128 = 4895217125691974194;
reconstruct(a_0, a_1) //, a_2) // , a_3, a_4) //, a_5, a_6)
}
}
fn reconstruct(
a0: Vec<u64>,
a1: Vec<u64>,
// a2: Vec<u64>,
// a_3: Vec<u64>,
// a_4: Vec<u64>,
// a_5: Vec<u64>,
// a_6: Vec<u64>,
) -> Vec<u64> {
// let Q = P0 as u128 * P1 as u128;
// y_i = q/q_i
// let y0 = ((u64::MAX as u128 + 1) / P0 as u128);
// let y1 = ((u64::MAX as u128 + 1) / P1 as u128);
// let y2 = ((u64::MAX as u128 + 1) / P2 as u128) as u64;
let y0: u128 = P1 as u128; // N_i =Q/P0 = P1*P2
let y1: u128 = P0 as u128;
// let y1: u128 = P0 as u128 * P2 as u128;
// let y0: u128 = P1 as u128 * P2 as u128; // N_i =Q/P0 = P1*P2
// let y1: u128 = P0 as u128 * P2 as u128;
// let y2: u128 = P0 as u128 * P1 as u128;
// let y0 = (Q / P0 as u128) as u64;
// let y1 = (Q / P1 as u128) as u64;
// let y2 = ((u64::MAX as u128 + 1) / P2 as u128) as u64;
// let y3 = ((u64::MAX as u128 + 1) / P3 as u128) as u64;
// let y4 = ((u64::MAX as u128 + 1) / P4 as u128) as u64;
// y_i^-1 mod q_i = z_i
let z0: u128 = inv_mod(P0 as u128, y0); // M_i = N_i^-1 mod q_i
let z1: u128 = inv_mod(P1 as u128, y1);
// let z2: u128 = inv_mod(P2 as u128, y2);
// let y2_inv = inv_mod(P2 as u128, y2);
// let y3_inv = inv_mod(P3 as u128, y3);
// let y4_inv = inv_mod(P4 as u128, y4);
// m1 = q1^-1 mod q2
// aux = (a2 - a1) * m1 mod q2
// a = a1 + (q1 * m1) * aux
/*
let m1 = inv_mod(P1 as u128, P0 as u128) as u64; // P0^-1 mod P1
let aux: Vec<u64> = itertools::zip_eq(a0.clone(), a1.clone())
.map(|(a0_i, a1_i)| ((a1_i - a0_i) * m1) % P1)
.collect();
let a: Vec<u64> = itertools::zip_eq(a0, aux)
// .map(|(a1_i, aux_i)| a1_i + (P1 * m1) * aux_i)
// .map(|(a0_i, aux_i)| a0_i + (P0 * m1) * aux_i)
.map(|(a0_i, aux_i)| a0_i + ((P0 * m1) % P1) * aux_i)
.collect();
a
*/
let p0: u128 = P0 as u128;
let p1: u128 = P1 as u128;
let a: Vec<u64> = itertools::zip_eq(a0, a1)
.map(|(a0_i, a1_i)| a0_i as u128 + ((p0 * z1) % p1) * (((a1_i - a0_i) as u128 * z1) % p1))
.map(|v| v as u64)
.collect();
a
// dbg!(a0[0] as u128);
// dbg!(a0[0] as u128 * y0);
// dbg!(a0[0] as u128 * z0);
// dbg!(a0[0] as u128 * y0 * z0);
// let a: Vec<u128> = itertools::multizip((a0, a1, a2))
// .map(|(a0_i, a1_i, a2_i)| {
// a0_i as u128 * y0 * z0 + a1_i as u128 * y1 * z1 + a2_i as u128 * y2 * z2
// })
// .collect();
// dbg!(&a);
// let Q = y2 * P2 as u128;
// let a: Vec<u128> = a.iter().map(|a_i| a_i % Q).collect();
// dbg!(&a);
// let q64 = 1_u128 << 64;
// let a: Vec<u64> = a.iter().map(|a_i| (a_i % q64) as u64).collect();
// a
/*
// x_i*z_i mod q_i
let r0: Vec<u64> = a_0.iter().map(|a_i| ((a_i * z0) % P0) * y0).collect();
let r1: Vec<u64> = a_1.iter().map(|a_i| ((a_i * z1) % P1) * y1).collect();
// let r0: Vec<u64> = a_0.iter().map(|a_i| ((a_i * z0) % P0) * y0).collect();
// let r1: Vec<u64> = a_1.iter().map(|a_i| ((a_i * z1) % P1) * y1).collect();
// let r2: Vec<u64> = a_2.iter().map(|a_i| ((a_i * y2_inv) % P2) * y2).collect();
// let r3: Vec<u64> = a_3.iter().map(|a_i| ((a_i * y3_inv) % P3) * y3).collect();
// let r4: Vec<u64> = a_4.iter().map(|a_i| ((a_i * y4_inv) % P4) * y4).collect();
let r: Vec<u64> = itertools::multizip((r0.iter(), r1.iter()))
.map(|(a, b)| a + b)
.collect();
// let r = r0;
//
dbg!(&r);
let p1p2: u128 = (P0 as u128) * (P1 as u128);
// let p1p2_inv: u128 = inv_mod((P0 % P1) as u128, P1) as u128;
let p1p2_inv: u128 = inv_mod((P0) as u128, P1) as u128;
dbg!(&p1p2);
dbg!(&p1p2_inv);
// let p1p2: u128 = P0 as u128 / 2; // PIHALF
let r = r
.iter()
.map(|c_i_u64| {
let c_i = *c_i_u64 as u128;
if c_i * 2 >= p1p2 {
// if c_i >= p1p2 {
c_i.wrapping_sub(p1p2) as u64
} else {
c_i as u64
}
})
.collect();
// let r: Vec<u64> = itertools::multizip((r0.iter(), r1.iter(), r2.iter(), r3.iter(), r4.iter()))
// .map(|(a, b, c, d, e)| a + b + c + d + e)
// .collect();
// let mut r = a_0 + y0_inv + a_1 * y1_inv + a_2 * y2_inv + a_3 * y3_inv + a_4 * y4_inv;
r
*/
}
fn exp_mod(q: u128, x: u128, k: u128) -> u128 {
// work on u128 to avoid overflow
let mut r = 1u128;
let mut x = x.clone();
let mut k = k.clone();
x = x % q;
// exponentiation by square strategy
while k > 0 {
if k % 2 == 1 {
r = (r * x) % q;
}
x = (x * x) % q;
k /= 2;
}
r
}
/// returns x^-1 mod Q
fn inv_mod(q: u128, x: u128) -> u128 {
// by Fermat's Little Theorem, x^-1 mod q \equiv x^{q-2} mod q
exp_mod(q, x, q - 2)
}
#[cfg(test)]
mod tests {
use super::*;
use rand_distr::Distribution;
use anyhow::Result;
#[test]
fn test_dbg() -> Result<()> {
println!("{}", 1u128 << 64);
let n: usize = 16;
println!("{}", P0);
println!("{}", P1);
// let q = 1u128 << 64;
// assert!(P0 as u128 * P1 as u128 > (n as u128 * (q * q)) / 2);
// let a: Vec<u64> = vec![1u64, 2, 3, 4];
// let a: Vec<u64> = vec![1u64, 2, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
// let a: Vec<u64> = vec![9u64, 8, 7, 6, 0, 9999, 0, 0, 0, 0, 0, 0, 6, 7, 8, 9];
use rand::Rng;
let mut rng = rand::thread_rng();
let a: Vec<u64> = (0..n)
// .map(|_| rng.gen_range(0..=(1u64 << 57) - 1) - (1u64 << 56))
.map(|_| rng.gen_range(0..(1 << 62)))
.collect();
dbg!(a.len());
let a_ntt = NTT::ntt(n, &a);
dbg!(&a_ntt);
let a_intt = NTT::intt(n, &a_ntt);
dbg!(&a_intt);
assert_eq!(a_intt, a);
Ok(())
}
}

+ 197
- 65
arith/src/ntt_u64.rs

@ -7,10 +7,21 @@ use crate::ntt::NTT as NTT_p;
// const P0: u64 = 4611686018427387905; // const P0: u64 = 4611686018427387905;
// const P1: u64 = 4611686018326724609; // const P1: u64 = 4611686018326724609;
const P0: u64 = 8070449433331580929;
const P1: u64 = 8070450532384645121;
// const P0: u64 = (1 << 60) - (1 << 28) + 1;
// const P1: u64 = (1 << 60) - (1 << 27) + 1;
// const P0: u64 = 8070449433331580929; // max use 1<<62 -1
// const P1: u64 = 8070450532384645121;
// const P0: u64 = 0x80000000080001; // max use 1<<55 -1
// const P1: u64 = 0x80000000130001;
// const P0: u64 = ((1u128 << 64) - (1u128 << 28) + 1u128) as u64;
// const P1: u64 = ((1u128 << 64) - (1u128 << 27) + 1u128) as u64;
// const P2: u64 = ((1u128 << 64) - (1u128 << 26) + 1u128) as u64;
const P0: u64 = ((1u128 << 32) - (1u128 << 18) + 1u128) as u64;
const P1: u64 = ((1u128 << 32) - (1u128 << 17) + 1u128) as u64;
const P2: u64 = ((1u128 << 32) - (1u128 << 16) + 1u128) as u64;
// const P1: u64 = ((1u128 << 64) - (1u128 << 27) + 1u128) as u64;
// const P2: u64 = (1 << 60) - (1 << 26) + 1; // const P2: u64 = (1 << 60) - (1 << 26) + 1;
#[derive(Debug)] #[derive(Debug)]
@ -23,7 +34,7 @@ impl NTT {
) -> ( ) -> (
Vec<u64>, Vec<u64>,
Vec<u64>, Vec<u64>,
// Vec<u64>,
Vec<u64>,
// Vec<u64>, // Vec<u64>,
// Vec<u64>, // Vec<u64>,
// Vec<u64>, // Vec<u64>,
@ -32,23 +43,27 @@ impl NTT {
// TODO ensure that: a_i <P0 // TODO ensure that: a_i <P0
// apply modulus p_i // apply modulus p_i
let a_0: Vec<u64> = a.iter().map(|a_i| (a_i % P0 + P0) % P0).collect();
let a_1: Vec<u64> = a.iter().map(|a_i| (a_i % P1 + P1) % P1).collect();
let a_0: Vec<u64> = a.iter().map(|a_i| a_i % P0).collect();
let a_1: Vec<u64> = a.iter().map(|a_i| a_i % P1).collect();
let a_2: Vec<u64> = a.iter().map(|a_i| a_i % P2).collect();
// let a_0: Vec<u64> = a.iter().map(|a_i| (a_i % P0 + P0) % P0).collect();
// let a_1: Vec<u64> = a.iter().map(|a_i| (a_i % P1 + P1) % P1).collect();
// let a_2: Vec<u64> = a.iter().map(|a_i| (a_i % P2 + P2) % P2).collect(); // let a_2: Vec<u64> = a.iter().map(|a_i| (a_i % P2 + P2) % P2).collect();
// let a_3: Vec<u64> = a.iter().map(|a_i| (a_i % P3 + P3) % P3).collect(); // let a_3: Vec<u64> = a.iter().map(|a_i| (a_i % P3 + P3) % P3).collect();
// let a_4: Vec<u64> = a.iter().map(|a_i| (a_i % P4 + P4) % P4).collect(); // let a_4: Vec<u64> = a.iter().map(|a_i| (a_i % P4 + P4) % P4).collect();
// let a_5: Vec<u64> = a.iter().map(|a_i| (a_i % P5 + P5) % P5).collect(); // let a_5: Vec<u64> = a.iter().map(|a_i| (a_i % P5 + P5) % P5).collect();
// let a_6: Vec<u64> = a.iter().map(|a_i| (a_i % P6 + P6) % P6).collect(); // let a_6: Vec<u64> = a.iter().map(|a_i| (a_i % P6 + P6) % P6).collect();
dbg!(&a_0, &a_1, &a_2);
let r_0 = NTT_p::ntt(P0, n, &a_0); let r_0 = NTT_p::ntt(P0, n, &a_0);
let r_1 = NTT_p::ntt(P1, n, &a_1); let r_1 = NTT_p::ntt(P1, n, &a_1);
// let r_2 = NTT_p::ntt(P2, n, &a_2);
let r_2 = NTT_p::ntt(P2, n, &a_2);
// let r_3 = NTT_p::ntt(P3, n, &a_3); // let r_3 = NTT_p::ntt(P3, n, &a_3);
// let r_4 = NTT_p::ntt(P4, n, &a_4); // let r_4 = NTT_p::ntt(P4, n, &a_4);
// let r_5 = NTT_p::ntt(P5, n, &a_5); // let r_5 = NTT_p::ntt(P5, n, &a_5);
// let r_6 = NTT_p::ntt(P6, n, &a_6); // let r_6 = NTT_p::ntt(P6, n, &a_6);
(r_0, r_1) //, r_2) //, r_3, r_4) //, r_5, r_6)
(r_0, r_1, r_2) //, r_3, r_4) //, r_5, r_6)
} }
pub fn intt( pub fn intt(
@ -56,7 +71,7 @@ impl NTT {
r: &( r: &(
Vec<u64>, Vec<u64>,
Vec<u64>, Vec<u64>,
// Vec<u64>,
Vec<u64>,
// Vec<u64>, // Vec<u64>,
// Vec<u64>, // Vec<u64>,
// Vec<u64>, // Vec<u64>,
@ -65,7 +80,7 @@ impl NTT {
) -> Vec<u64> { ) -> Vec<u64> {
let a_0 = NTT_p::intt(P0, n, &r.0); let a_0 = NTT_p::intt(P0, n, &r.0);
let a_1 = NTT_p::intt(P1, n, &r.1); let a_1 = NTT_p::intt(P1, n, &r.1);
// let a_2 = NTT_p::intt(P2, n, &r.2);
let a_2 = NTT_p::intt(P2, n, &r.2);
// let a_3 = NTT_p::intt(P3, n, &r.3); // let a_3 = NTT_p::intt(P3, n, &r.3);
// let a_4 = NTT_p::intt(P4, n, &r.4); // let a_4 = NTT_p::intt(P4, n, &r.4);
// let a_5 = NTT_p::intt(P5, n, &r.5); // let a_5 = NTT_p::intt(P5, n, &r.5);
@ -75,28 +90,28 @@ impl NTT {
// let inv_p1_mod_p2: u128 = inv_mod_u64(p1 % p2, p2) as u128; // let inv_p1_mod_p2: u128 = inv_mod_u64(p1 % p2, p2) as u128;
// const INV_P1_MOD_P2: u128 = 4895217125691974194; // const INV_P1_MOD_P2: u128 = 4895217125691974194;
reconstruct(a_0, a_1) //, a_2) // , a_3, a_4) //, a_5, a_6)
reconstruct(a_0, a_1, a_2) // , a_3, a_4) //, a_5, a_6)
} }
} }
fn reconstruct( fn reconstruct(
a0: Vec<u64>, a0: Vec<u64>,
a1: Vec<u64>, a1: Vec<u64>,
// a2: Vec<u64>,
a2: Vec<u64>,
// a_3: Vec<u64>, // a_3: Vec<u64>,
// a_4: Vec<u64>, // a_4: Vec<u64>,
// a_5: Vec<u64>, // a_5: Vec<u64>,
// a_6: Vec<u64>, // a_6: Vec<u64>,
) -> Vec<u64> { ) -> Vec<u64> {
// let Q = P0 as u128 * P1 as u128;
// y_i = q/q_i // y_i = q/q_i
let y0 = ((u64::MAX as u128 + 1) / P0 as u128);
let y1 = ((u64::MAX as u128 + 1) / P1 as u128);
// let y0 = ((u64::MAX as u128 + 1) / P0 as u128);
// let y1 = ((u64::MAX as u128 + 1) / P1 as u128);
// let y2 = ((u64::MAX as u128 + 1) / P2 as u128) as u64; // let y2 = ((u64::MAX as u128 + 1) / P2 as u128) as u64;
// let y0: u128 = P1 as u128 * P2 as u128; // N_i =Q/P0 = P1*P2
// let y1: u128 = P0 as u128 * P2 as u128;
// let y2: u128 = P0 as u128 * P1 as u128;
// let y0: u128 = P1 as u128; // N_i =Q/P0 = P1*P2
// let y1: u128 = P0 as u128;
let y0: u128 = P1 as u128 * P2 as u128; // N_i =Q/P0 = P1*P2
let y1: u128 = P0 as u128 * P2 as u128;
let y2: u128 = P0 as u128 * P1 as u128;
// let y0 = (Q / P0 as u128) as u64; // let y0 = (Q / P0 as u128) as u64;
// let y1 = (Q / P1 as u128) as u64; // let y1 = (Q / P1 as u128) as u64;
// let y2 = ((u64::MAX as u128 + 1) / P2 as u128) as u64; // let y2 = ((u64::MAX as u128 + 1) / P2 as u128) as u64;
@ -104,9 +119,10 @@ fn reconstruct(
// let y4 = ((u64::MAX as u128 + 1) / P4 as u128) as u64; // let y4 = ((u64::MAX as u128 + 1) / P4 as u128) as u64;
// y_i^-1 mod q_i = z_i // y_i^-1 mod q_i = z_i
dbg!(P0, y0);
let z0: u128 = inv_mod(P0 as u128, y0); // M_i = N_i^-1 mod q_i let z0: u128 = inv_mod(P0 as u128, y0); // M_i = N_i^-1 mod q_i
let z1: u128 = inv_mod(P1 as u128, y1); let z1: u128 = inv_mod(P1 as u128, y1);
// let z2: u128 = inv_mod(P2 as u128, y2);
let z2: u128 = inv_mod(P2 as u128, y2);
// let y2_inv = inv_mod(P2 as u128, y2); // let y2_inv = inv_mod(P2 as u128, y2);
// let y3_inv = inv_mod(P3 as u128, y3); // let y3_inv = inv_mod(P3 as u128, y3);
// let y4_inv = inv_mod(P4 as u128, y4); // let y4_inv = inv_mod(P4 as u128, y4);
@ -115,25 +131,45 @@ fn reconstruct(
// aux = (a2 - a1) * m1 mod q2 // aux = (a2 - a1) * m1 mod q2
// a = a1 + (q1 * m1) * aux // a = a1 + (q1 * m1) * aux
let m1 = inv_mod(P1 as u128, P0 as u128) as u64; // P0^-1 mod P1
let aux: Vec<u64> = itertools::zip_eq(a0.clone(), a1.clone())
.map(|(a0_i, a1_i)| ((a1_i - a0_i) * m1) % P1)
.collect();
let a: Vec<u64> = itertools::zip_eq(a0, aux)
// .map(|(a1_i, aux_i)| a1_i + (P1 * m1) * aux_i)
// .map(|(a0_i, aux_i)| a0_i + (P0 * m1) * aux_i)
.map(|(a0_i, aux_i)| a0_i + ((P0 * m1) % P1) * aux_i)
.collect();
a
// m1 == z1
// let m1 = inv_mod(P1 as u128, P0 as u128); // P0^-1 mod P1
// let aux: Vec<u64> = itertools::zip_eq(a0.clone(), a1.clone())
// .map(|(a0_i, a1_i)| ((a1_i - a0_i) * m1) % P1)
// .collect();
let p0: u128 = P0 as u128;
let p1: u128 = P1 as u128;
let p2: u128 = P2 as u128;
// let a: Vec<u64> = itertools::zip_eq(a0, a1)
// // .map(|(a1_i, aux_i)| a1_i + (P1 * m1) * aux_i)
// // .map(|(a0_i, aux_i)| a0_i + (P0 * m1) * aux_i)
// .map(|(a0_i, a1_i)| a0_i as u128 + ((p0 * z1) % p1) * (((a1_i - a0_i) as u128 * z1) % p1))
// .map(|v| v as u64)
// // let a: Vec<u64> = itertools::zip_eq(a0, a1)
// // .map(|(a0_i, a1_i)| {
// // ((((a0_i as u128 * z0) % P0 as u128) * y0) + (a1_i as u128 * z1 % P1 as u128) * y1)
// // as u64
// // })
// .collect();
// a
// dbg!(a0[0] as u128); // dbg!(a0[0] as u128);
// dbg!(a0[0] as u128 * y0); // dbg!(a0[0] as u128 * y0);
// dbg!(a0[0] as u128 * z0); // dbg!(a0[0] as u128 * z0);
// dbg!(a0[0] as u128 * y0 * z0); // dbg!(a0[0] as u128 * y0 * z0);
// let a: Vec<u128> = itertools::multizip((a0, a1, a2))
// .map(|(a0_i, a1_i, a2_i)| {
// a0_i as u128 * y0 * z0 + a1_i as u128 * y1 * z1 + a2_i as u128 * y2 * z2
// })
// .collect();
dbg!(&y0, &y1, &y2);
dbg!(&z0, &z1, &z2);
let Q = P0 as u128 * P1 as u128 * P2 as u128;
let a: Vec<u64> = itertools::multizip((a0, a1, a2))
.map(|(a0_i, a1_i, a2_i)| {
(a0_i as u128 * y0 * z0)// % Q
+ (a1_i as u128 * y1 * z1)// % Q
+ (a2_i as u128 * y2 * z2) // % Q
})
.map(|v| v % Q)
.map(|v| v as u32)
.map(|v| v as u64)
.collect();
a
// dbg!(&a); // dbg!(&a);
// let Q = y2 * P2 as u128; // let Q = y2 * P2 as u128;
// let a: Vec<u128> = a.iter().map(|a_i| a_i % Q).collect(); // let a: Vec<u128> = a.iter().map(|a_i| a_i % Q).collect();
@ -202,11 +238,75 @@ fn exp_mod(q: u128, x: u128, k: u128) -> u128 {
} }
r r
} }
/// returns x^-1 mod Q
fn inv_mod(q: u128, x: u128) -> u128 {
// by Fermat's Little Theorem, x^-1 mod q \equiv x^{q-2} mod q
exp_mod(q, x, q - 2)
/// returns x^-1 mod Q, assuming x and Q are coprime, generally Q is prime
// fn inv_mod(q: u128, x: u128) -> u128 {
// // by Fermat's Little Theorem, x^-1 mod q \equiv x^{q-2} mod q
// // exp_mod(q, x, q - 2)
// exp_mod(q, x, q - 2)
// }
fn inv_mod(m: u128, a: u128) -> u128 {
// if m == 1 {
// return Some(0);
// }
let mut m = m.clone();
let mut a = a.clone();
let m0 = m.clone();
let mut x0: i128 = 0;
let mut x1: i128 = 1;
while a > 1 {
let q = a / m;
let t = m.clone();
m = a % m;
a = t.clone();
let t = x0;
x0 = x1 - (q as i128) * x0;
x1 = t;
}
if x1 < 0 {
x1 += m0 as i128;
}
x1 as u128
} }
// fn inv_mod(m: u128, a: u128) -> u128 {
// let mut m = m.clone();
// let mut a = a.clone();
// let m0 = m.clone();
// let mut x0 = 0;
// let mut x1 = 1;
//
// if m == 1 {
// return 0;
// }
//
// while a > 1 {
// let q = a / m;
//
// let mut t = m.clone();
//
// m = a % m;
// a = t.clone();
//
// t = x0.clone();
//
// x0 = x1 - q * x0;
//
// x1 = t.clone();
// }
//
// // if (x1 < 0) {
// // x1 = x1 + m0
// // }
//
// // return x1 % m0;
// return x1 % m0;
// }
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
@ -215,10 +315,50 @@ mod tests {
use anyhow::Result; use anyhow::Result;
#[test]
fn test_inv_mod() -> Result<()> {
let x = 3;
let x_inv = inv_mod(P0 as u128, x);
dbg!(&P0);
dbg!(&x_inv);
// let r = x_inv * x;
// dbg!(&r);
Ok(())
}
#[test]
fn test_reconstruct() -> Result<()> {
let n: usize = 16;
use rand::Rng;
let mut rng = rand::thread_rng();
let a: Vec<u64> = (0..n)
// .map(|_| rng.gen_range(0..(1 << 64)))
.map(|_| rng.gen_range(0..(1 << 32)))
// .map(|_| rng.gen_range(0..16))
// .map(|_| rng.sample(rand::distributions::Standard))
.collect();
dbg!(a.len());
let a_0: Vec<u64> = a.iter().map(|a_i| a_i % P0).collect();
let a_1: Vec<u64> = a.iter().map(|a_i| a_i % P1).collect();
let a_2: Vec<u64> = a.iter().map(|a_i| a_i % P2).collect();
dbg!(&a_0, &a_1, &a_2);
let a_reconstructed = reconstruct(a_0, a_1, a_2);
dbg!(&a_reconstructed);
assert_eq!(a_reconstructed, a);
Ok(())
}
#[test] #[test]
fn test_dbg() -> Result<()> { fn test_dbg() -> Result<()> {
println!("{}", 1u128 << 64); println!("{}", 1u128 << 64);
let n: usize = 16;
let n: usize = 2;
println!("{}", P0); println!("{}", P0);
println!("{}", P1); println!("{}", P1);
@ -231,38 +371,30 @@ mod tests {
use rand::Rng; use rand::Rng;
let mut rng = rand::thread_rng(); let mut rng = rand::thread_rng();
let a: Vec<u64> = (0..n) let a: Vec<u64> = (0..n)
// .map(|_| rng.gen_range(0..=(1u64 << 57) - 1) - (1u64 << 56))
.map(|_| rng.gen_range(0..(1 << 61)))
// .map(|_| rng.gen_range(0..(1 << 64)))
// .map(|_| rng.gen_range(0..(1 << 32)))
.map(|_| rng.gen_range(0..16))
// .map(|_| rng.sample(rand::distributions::Standard))
.collect(); .collect();
dbg!(a.len()); dbg!(a.len());
let a_ntt = NTT::ntt(n, &a);
dbg!(&a_ntt);
let a_intt = NTT::intt(n, &a_ntt);
let a_0: Vec<u64> = a.iter().map(|a_i| a_i % P0).collect();
let a_1: Vec<u64> = a.iter().map(|a_i| a_i % P1).collect();
let a_2: Vec<u64> = a.iter().map(|a_i| a_i % P2).collect();
dbg!(&a_0, &a_1, &a_2);
// let a_0 = vec![3];
// let a_1 = vec![3];
// let a_2 = vec![3];
let a_intt = reconstruct(a_0, a_1, a_2);
// let a_ntt = NTT::ntt(n, &a);
// dbg!(&a_ntt);
//
// let a_intt = NTT::intt(n, &a_ntt);
dbg!(&a_intt); dbg!(&a_intt);
assert_eq!(a_intt, a); assert_eq!(a_intt, a);
// unnecessary:
// let a: Vec<u64> = vec![2u64, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
// let a_ntt = NTT_p::ntt(P0, n, &a);
// dbg!(&a_ntt);
// let a_intt = NTT_p::intt(P0, n, &a_ntt);
// dbg!(&a_intt);
// NOTE: *n_inv is already done in the intt method.
// Multiplies the values by the inverse of the polynomial modulo the NTT modulus
// let n_inv = inv_mod(P0 as u128, n as u64); // n^-1 mod p0
// let a_new: Vec<u64> = a_0_intt
// .iter()
// .map(|a_i| ((*a_i as u128 * n_inv as u128) % P0 as u128) as u64)
// .collect();
// assert_eq!(a_intt, a);
Ok(()) Ok(())
} }
} }

Loading…
Cancel
Save