Browse Source

TLev encryption & decryption

gfhe-over-ring-trait
arnaucube 2 weeks ago
parent
commit
fd5c4124ea
3 changed files with 94 additions and 1 deletions
  1. +1
    -1
      README.md
  2. +1
    -0
      tfhe/src/lib.rs
  3. +92
    -0
      tfhe/src/tlev.rs

+ 1
- 1
README.md

@ -1,7 +1,7 @@
# fhe-study
Implementations from scratch done while studying some FHE papers; do not use in production.
- `arith`: contains $\mathbb{Z}_q$, $R_q=\mathbb{Z}_q[X]/(X^N+1)$, $R=\mathbb{Z}[X]/(X^N+1)$, $\mathbb{T}_{Q}[X]/(X^N +1)$ arithmetic implementations, together with the NTT implementation.
- `arith`: contains $\mathbb{Z}_q$, $R_q=\mathbb{Z}_q[X]/(X^N+1)$, $R=\mathbb{Z}[X]/(X^N+1)$, $\mathbb{T}_Q[X]/(X^N +1)$ arithmetic implementations, together with the NTT implementation.
- `gfhe`: (gfhe=generalized-fhe) contains the structs and logic for RLWE, GLWE, GLev, GGSW, RGSW cryptosystems, and modulus switching and key switching methods, which can be used by concrete FHE schemes.
- `bfv`: https://eprint.iacr.org/2012/144.pdf scheme implementation
- `ckks`: https://eprint.iacr.org/2016/421.pdf scheme implementation

+ 1
- 0
tfhe/src/lib.rs

@ -5,4 +5,5 @@
#![allow(clippy::upper_case_acronyms)]
#![allow(dead_code)] // TMP
pub mod tlev;
pub mod tlwe;

+ 92
- 0
tfhe/src/tlev.rs

@ -0,0 +1,92 @@
use anyhow::Result;
use rand::Rng;
use std::array;
use std::ops::{Add, Mul};
use arith::{Ring, Rq, Tn, T64, TR};
use crate::tlwe::{PublicKey, SecretKey, TLWE};
#[derive(Clone, Debug)]
pub struct TLev<const K: usize>(pub(crate) Vec<TLWE<K>>);
impl<const K: usize> TLev<K> {
pub fn encode<const T: u64>(m: &Rq<T, 1>) -> Tn<1> {
let coeffs = m.coeffs();
Tn(array::from_fn(|i| T64(coeffs[i].0)))
}
pub fn decode<const T: u64>(p: &Tn<1>) -> Rq<T, 1> {
Rq::<T, 1>::from_vec_u64(p.coeffs().iter().map(|c| c.0).collect())
}
pub fn encrypt(
mut rng: impl Rng,
beta: u32,
l: u32,
pk: &PublicKey<K>,
m: &Tn<1>,
) -> Result<Self> {
let tlev: Vec<TLWE<K>> = (1..l + 1)
.map(|i| {
TLWE::<K>::encrypt(&mut rng, pk, &(*m * (u64::MAX / beta.pow(i as u32) as u64)))
})
.collect::<Result<Vec<_>>>()?;
Ok(Self(tlev))
}
pub fn encrypt_s(
mut rng: impl Rng,
beta: u32,
l: u32,
sk: &SecretKey<K>,
m: &Tn<1>,
) -> Result<Self> {
let tlev: Vec<TLWE<K>> = (1..l + 1)
.map(|i| {
TLWE::<K>::encrypt_s(&mut rng, sk, &(*m * (u64::MAX / beta.pow(i as u32) as u64)))
})
.collect::<Result<Vec<_>>>()?;
Ok(Self(tlev))
}
pub fn decrypt(&self, sk: &SecretKey<K>, beta: u32) -> Tn<1> {
let pt = self.0[0].decrypt(sk);
pt.mul_div_round(beta as u64, u64::MAX)
}
}
#[cfg(test)]
mod tests {
use anyhow::Result;
use rand::distributions::Uniform;
use super::*;
#[test]
fn test_encrypt_decrypt() -> Result<()> {
const T: u64 = 2; // plaintext modulus
const K: usize = 16;
type S = TLev<K>;
let beta: u32 = 2;
let l: u32 = 16;
let mut rng = rand::thread_rng();
for _ in 0..200 {
let (sk, pk) = TLWE::<K>::new_key(&mut rng)?;
let msg_dist = Uniform::new(0_u64, T);
let m: Rq<T, 1> = Rq::rand_u64(&mut rng, msg_dist)?;
let p: Tn<1> = S::encode::<T>(&m); // plaintext
let c = S::encrypt(&mut rng, beta, l, &pk, &p)?;
let p_recovered = c.decrypt(&sk, beta);
let m_recovered = S::decode::<T>(&p_recovered);
assert_eq!(m.remodule::<T>(), m_recovered.remodule::<T>());
}
Ok(())
}
}

Loading…
Cancel
Save