You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

644 lines
19 KiB

//! Polynomial ring Z_q[X]/(X^N+1)
//!
use anyhow::{anyhow, Result};
use rand::{distributions::Distribution, Rng};
use std::array;
use std::fmt;
use std::iter::Sum;
use std::ops::{Add, AddAssign, Mul, Neg, Sub, SubAssign};
use crate::ntt::NTT;
use crate::zq::{modulus_u64, Zq};
use crate::Ring;
// NOTE: currently using fixed-size arrays, but pending to see if with
// real-world parameters the stack can keep up; if not will move everything to
// use Vec.
/// PolynomialRing element, where the PolynomialRing is R = Z_q[X]/(X^n +1)
/// The implementation assumes that q is prime.
#[derive(Clone, Copy)]
pub struct Rq<const Q: u64, const N: usize> {
pub(crate) coeffs: [Zq<Q>; N],
// evals are set when doig a PRxPR multiplication, so it can be reused in future
// multiplications avoiding recomputing it
pub(crate) evals: Option<[Zq<Q>; N]>,
}
impl<const Q: u64, const N: usize> Ring for Rq<Q, N> {
type C = Zq<Q>;
fn coeffs(&self) -> Vec<Self::C> {
self.coeffs.to_vec()
}
fn zero() -> Self {
let coeffs = array::from_fn(|_| Zq::zero());
Self {
coeffs,
evals: None,
}
}
fn rand(mut rng: impl Rng, dist: impl Distribution<f64>) -> Self {
// let coeffs: [Zq<Q>; N] = array::from_fn(|_| Zq::from_u64(dist.sample(&mut rng)));
let coeffs: [Zq<Q>; N] = array::from_fn(|_| Self::C::rand(&mut rng, &dist));
Self {
coeffs,
evals: None,
}
}
fn from_vec(coeffs: Vec<Zq<Q>>) -> Self {
let mut p = coeffs;
modulus::<Q, N>(&mut p);
let coeffs = array::from_fn(|i| p[i]);
Self {
coeffs,
evals: None,
}
}
// returns the decomposition of each polynomial coefficient, such
// decomposition will be a vecotor of length N, containint N vectors of Zq
fn decompose(&self, beta: u32, l: u32) -> Vec<Self> {
let elems: Vec<Vec<Zq<Q>>> = self.coeffs.iter().map(|r| r.decompose(beta, l)).collect();
// transpose it
let r: Vec<Vec<Zq<Q>>> = (0..elems[0].len())
.map(|i| (0..elems.len()).map(|j| elems[j][i]).collect())
.collect();
// convert it to Rq<Q,N>
r.iter().map(|a_i| Self::from_vec(a_i.clone())).collect()
}
// returns [ [(num/den) * self].round() ] mod q
// ie. performs the multiplication and division over f64, and then it rounds the
// result, only applying the mod Q at the end
fn mul_div_round(&self, num: u64, den: u64) -> Self {
let r: Vec<f64> = self
.coeffs()
.iter()
.map(|e| ((num as f64 * e.0 as f64) / den as f64).round())
.collect();
Rq::<Q, N>::from_vec_f64(r)
}
}
impl<const Q: u64, const N: usize> From<crate::ring_n::R<N>> for Rq<Q, N> {
fn from(r: crate::ring_n::R<N>) -> Self {
Self::from_vec(
r.coeffs()
.iter()
.map(|e| Zq::<Q>::from_f64(*e as f64))
.collect(),
)
}
}
// apply mod (X^N+1)
pub fn modulus<const Q: u64, const N: usize>(p: &mut Vec<Zq<Q>>) {
if p.len() < N {
return;
}
for i in N..p.len() {
p[i - N] = p[i - N].clone() - p[i].clone();
p[i] = Zq(0);
}
p.truncate(N);
}
// PR stands for PolynomialRing
impl<const Q: u64, const N: usize> Rq<Q, N> {
pub fn coeffs(&self) -> [Zq<Q>; N] {
self.coeffs
}
pub fn compute_evals(&mut self) {
self.evals = Some(NTT::<Q, N>::ntt(self.coeffs));
}
pub fn to_r(self) -> crate::R<N> {
crate::R::<N>::from(self)
}
// TODO rm since it is implemented in Ring trait impl
// pub fn zero() -> Self {
// let coeffs = array::from_fn(|_| Zq::zero());
// Self {
// coeffs,
// evals: None,
// }
// }
// this method is mostly for tests
pub fn from_vec_u64(coeffs: Vec<u64>) -> Self {
let coeffs_mod_q = coeffs.iter().map(|c| Zq::from_u64(*c)).collect();
Self::from_vec(coeffs_mod_q)
}
pub fn from_vec_f64(coeffs: Vec<f64>) -> Self {
let coeffs_mod_q = coeffs.iter().map(|c| Zq::from_f64(*c)).collect();
Self::from_vec(coeffs_mod_q)
}
pub fn from_vec_i64(coeffs: Vec<i64>) -> Self {
let coeffs_mod_q = coeffs.iter().map(|c| Zq::from_f64(*c as f64)).collect();
Self::from_vec(coeffs_mod_q)
}
pub fn new(coeffs: [Zq<Q>; N], evals: Option<[Zq<Q>; N]>) -> Self {
Self { coeffs, evals }
}
pub fn rand_abs(mut rng: impl Rng, dist: impl Distribution<f64>) -> Result<Self> {
let coeffs: [Zq<Q>; N] = array::from_fn(|_| Zq::from_f64(dist.sample(&mut rng).abs()));
Ok(Self {
coeffs,
evals: None,
})
}
pub fn rand_f64_abs(mut rng: impl Rng, dist: impl Distribution<f64>) -> Result<Self> {
let coeffs: [Zq<Q>; N] = array::from_fn(|_| Zq::from_f64(dist.sample(&mut rng).abs()));
Ok(Self {
coeffs,
evals: None,
})
}
pub fn rand_f64(mut rng: impl Rng, dist: impl Distribution<f64>) -> Result<Self> {
let coeffs: [Zq<Q>; N] = array::from_fn(|_| Zq::from_f64(dist.sample(&mut rng)));
Ok(Self {
coeffs,
evals: None,
})
}
pub fn rand_u64(mut rng: impl Rng, dist: impl Distribution<u64>) -> Result<Self> {
let coeffs: [Zq<Q>; N] = array::from_fn(|_| Zq::from_u64(dist.sample(&mut rng)));
Ok(Self {
coeffs,
evals: None,
})
}
// WIP. returns random v \in {0,1}. // TODO {-1, 0, 1}
pub fn rand_bin(mut rng: impl Rng, dist: impl Distribution<bool>) -> Result<Self> {
let coeffs: [Zq<Q>; N] = array::from_fn(|_| Zq::from_bool(dist.sample(&mut rng)));
Ok(Rq {
coeffs,
evals: None,
})
}
// Warning: this method will behave differently depending on the values P and Q:
// if Q<P, it just 'renames' the modulus parameter to P
// if Q>=P, it crops to mod P
pub fn remodule<const P: u64>(&self) -> Rq<P, N> {
Rq::<P, N>::from_vec_u64(self.coeffs().iter().map(|m_i| m_i.0).collect())
}
/// perform the mod switch operation from Q to Q', where Q2=Q'
pub fn mod_switch<const Q2: u64>(&self) -> Rq<Q2, N> {
Rq::<Q2, N> {
coeffs: array::from_fn(|i| self.coeffs[i].mod_switch::<Q2>()),
evals: None,
}
}
// applies mod(T) to all coefficients of self
pub fn coeffs_mod<const T: u64>(&self) -> Self {
Rq::<Q, N>::from_vec_u64(
self.coeffs()
.iter()
.map(|m_i| modulus_u64::<T>(m_i.0))
.collect(),
)
}
// TODO review if needed, or if with this interface
pub fn mul_by_matrix(&self, m: &Vec<Vec<Zq<Q>>>) -> Result<Vec<Zq<Q>>> {
matrix_vec_product(m, &self.coeffs.to_vec())
}
pub fn mul_by_zq(&self, s: &Zq<Q>) -> Self {
Self {
coeffs: array::from_fn(|i| self.coeffs[i] * *s),
evals: None,
}
}
pub fn mul_by_u64(&self, s: u64) -> Self {
let s = Zq::from_u64(s);
Self {
coeffs: array::from_fn(|i| self.coeffs[i] * s),
// coeffs: self.coeffs.iter().map(|&e| e * s).collect(),
evals: None,
}
}
pub fn mul_by_f64(&self, s: f64) -> Self {
Self {
coeffs: array::from_fn(|i| Zq::from_f64(self.coeffs[i].0 as f64 * s)),
evals: None,
}
}
pub fn mul(&mut self, rhs: &mut Self) -> Self {
mul_mut(self, rhs)
}
// divides by the given scalar 's' and rounds, returning a Rq<Q,N>
// TODO rm
pub fn div_round(&self, s: u64) -> Self {
let r: Vec<f64> = self
.coeffs()
.iter()
.map(|e| (e.0 as f64 / s as f64).round())
.collect();
Rq::<Q, N>::from_vec_f64(r)
}
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// TODO simplify
let mut str = "";
let mut zero = true;
for (i, coeff) in self.coeffs.iter().enumerate().rev() {
if coeff.0 == 0 {
continue;
}
zero = false;
f.write_str(str)?;
if coeff.0 != 1 {
f.write_str(coeff.0.to_string().as_str())?;
if i > 0 {
f.write_str("*")?;
}
}
if coeff.0 == 1 && i == 0 {
f.write_str(coeff.0.to_string().as_str())?;
}
if i == 1 {
f.write_str("x")?;
} else if i > 1 {
f.write_str("x^")?;
f.write_str(i.to_string().as_str())?;
}
str = " + ";
}
if zero {
f.write_str("0")?;
}
f.write_str(" mod Z_")?;
f.write_str(Q.to_string().as_str())?;
f.write_str("/(X^")?;
f.write_str(N.to_string().as_str())?;
f.write_str("+1)")?;
Ok(())
}
pub fn infinity_norm(&self) -> u64 {
self.coeffs()
.iter()
.map(|x| if x.0 > (Q / 2) { Q - x.0 } else { x.0 })
.fold(0, |a, b| a.max(b))
}
pub fn mod_centered_q(&self) -> crate::ring_n::R<N> {
self.to_r().mod_centered_q::<Q>()
}
}
pub fn matrix_vec_product<const Q: u64>(m: &Vec<Vec<Zq<Q>>>, v: &Vec<Zq<Q>>) -> Result<Vec<Zq<Q>>> {
// assert_eq!(m.len(), m[0].len()); // TODO change to returning err
// assert_eq!(m.len(), v.len());
if m.len() != m[0].len() {
return Err(anyhow!("expected 'm' to be a square matrix"));
}
if m.len() != v.len() {
return Err(anyhow!(
"m.len: {} should be equal to v.len(): {}",
m.len(),
v.len(),
));
}
Ok(m.iter()
.map(|row| {
row.iter()
.zip(v.iter())
.map(|(&row_i, &v_i)| row_i * v_i)
.sum()
})
.collect::<Vec<Zq<Q>>>())
}
pub fn transpose<const Q: u64>(m: &[Vec<Zq<Q>>]) -> Vec<Vec<Zq<Q>>> {
// TODO case when m[0].len()=0
// TODO non square matrix
let mut r: Vec<Vec<Zq<Q>>> = vec![vec![Zq(0); m[0].len()]; m.len()];
for (i, m_row) in m.iter().enumerate() {
for (j, m_ij) in m_row.iter().enumerate() {
r[j][i] = *m_ij;
}
}
r
}
impl<const Q: u64, const N: usize> PartialEq for Rq<Q, N> {
fn eq(&self, other: &Self) -> bool {
self.coeffs == other.coeffs
}
}
impl<const Q: u64, const N: usize> Add<Rq<Q, N>> for Rq<Q, N> {
type Output = Self;
fn add(self, rhs: Self) -> Self {
Self {
coeffs: array::from_fn(|i| self.coeffs[i] + rhs.coeffs[i]),
evals: None,
}
// Self {
// coeffs: self
// .coeffs
// .iter()
// .zip(rhs.coeffs)
// .map(|(a, b)| *a + b)
// .collect(),
// evals: None,
// }
// Self(r.iter_mut().map(|e| e.r#mod()).collect()) // TODO mod should happen auto in +
}
}
impl<const Q: u64, const N: usize> Add<&Rq<Q, N>> for &Rq<Q, N> {
type Output = Rq<Q, N>;
fn add(self, rhs: &Rq<Q, N>) -> Self::Output {
Rq {
coeffs: array::from_fn(|i| self.coeffs[i] + rhs.coeffs[i]),
evals: None,
}
}
}
impl<const Q: u64, const N: usize> AddAssign for Rq<Q, N> {
fn add_assign(&mut self, rhs: Self) {
for i in 0..N {
self.coeffs[i] += rhs.coeffs[i];
}
}
}
impl<const Q: u64, const N: usize> Sum<Rq<Q, N>> for Rq<Q, N> {
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = Self>,
{
let mut acc = Rq::<Q, N>::zero();
for e in iter {
acc += e;
}
acc
}
}
impl<const Q: u64, const N: usize> Sub<Rq<Q, N>> for Rq<Q, N> {
type Output = Self;
fn sub(self, rhs: Self) -> Self {
Self {
coeffs: array::from_fn(|i| self.coeffs[i] - rhs.coeffs[i]),
evals: None,
}
}
}
impl<const Q: u64, const N: usize> Sub<&Rq<Q, N>> for &Rq<Q, N> {
type Output = Rq<Q, N>;
fn sub(self, rhs: &Rq<Q, N>) -> Self::Output {
Rq {
coeffs: array::from_fn(|i| self.coeffs[i] - rhs.coeffs[i]),
evals: None,
}
}
}
impl<const Q: u64, const N: usize> SubAssign for Rq<Q, N> {
fn sub_assign(&mut self, rhs: Self) {
for i in 0..N {
self.coeffs[i] -= rhs.coeffs[i];
}
}
}
impl<const Q: u64, const N: usize> Mul<Rq<Q, N>> for Rq<Q, N> {
type Output = Self;
fn mul(self, rhs: Self) -> Self {
mul(&self, &rhs)
}
}
impl<const Q: u64, const N: usize> Mul<&Rq<Q, N>> for &Rq<Q, N> {
type Output = Rq<Q, N>;
fn mul(self, rhs: &Rq<Q, N>) -> Self::Output {
mul(self, rhs)
}
}
// mul by Zq element
impl<const Q: u64, const N: usize> Mul<Zq<Q>> for Rq<Q, N> {
type Output = Self;
fn mul(self, s: Zq<Q>) -> Self {
self.mul_by_zq(&s)
}
}
impl<const Q: u64, const N: usize> Mul<&Zq<Q>> for &Rq<Q, N> {
type Output = Rq<Q, N>;
fn mul(self, s: &Zq<Q>) -> Self::Output {
self.mul_by_zq(s)
}
}
// mul by u64
impl<const Q: u64, const N: usize> Mul<u64> for Rq<Q, N> {
type Output = Self;
fn mul(self, s: u64) -> Self {
self.mul_by_u64(s)
}
}
impl<const Q: u64, const N: usize> Mul<&u64> for &Rq<Q, N> {
type Output = Rq<Q, N>;
fn mul(self, s: &u64) -> Self::Output {
self.mul_by_u64(*s)
}
}
// mul by f64
impl<const Q: u64, const N: usize> Mul<f64> for Rq<Q, N> {
type Output = Self;
fn mul(self, s: f64) -> Self {
self.mul_by_f64(s)
}
}
impl<const Q: u64, const N: usize> Mul<&f64> for &Rq<Q, N> {
type Output = Rq<Q, N>;
fn mul(self, s: &f64) -> Self::Output {
self.mul_by_f64(*s)
}
}
impl<const Q: u64, const N: usize> Neg for Rq<Q, N> {
type Output = Self;
fn neg(self) -> Self::Output {
Self {
coeffs: array::from_fn(|i| -self.coeffs[i]),
evals: None,
}
}
}
// note: this assumes that Q is prime
fn mul_mut<const Q: u64, const N: usize>(lhs: &mut Rq<Q, N>, rhs: &mut Rq<Q, N>) -> Rq<Q, N> {
// reuse evaluations if already computed
if !lhs.evals.is_some() {
lhs.evals = Some(NTT::<Q, N>::ntt(lhs.coeffs));
};
if !rhs.evals.is_some() {
rhs.evals = Some(NTT::<Q, N>::ntt(rhs.coeffs));
};
let lhs_evals = lhs.evals.unwrap();
let rhs_evals = rhs.evals.unwrap();
let c_ntt: [Zq<Q>; N] = array::from_fn(|i| lhs_evals[i] * rhs_evals[i]);
let c = NTT::<Q, { N }>::intt(c_ntt);
Rq::new(c, Some(c_ntt))
}
// note: this assumes that Q is prime
// TODO impl karatsuba for non-prime Q
fn mul<const Q: u64, const N: usize>(lhs: &Rq<Q, N>, rhs: &Rq<Q, N>) -> Rq<Q, N> {
// reuse evaluations if already computed
let lhs_evals = if lhs.evals.is_some() {
lhs.evals.unwrap()
} else {
NTT::<Q, N>::ntt(lhs.coeffs)
};
let rhs_evals = if rhs.evals.is_some() {
rhs.evals.unwrap()
} else {
NTT::<Q, N>::ntt(rhs.coeffs)
};
let c_ntt: [Zq<Q>; N] = array::from_fn(|i| lhs_evals[i] * rhs_evals[i]);
let c = NTT::<Q, { N }>::intt(c_ntt);
Rq::new(c, Some(c_ntt))
}
impl<const Q: u64, const N: usize> fmt::Display for Rq<Q, N> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.fmt(f)?;
Ok(())
}
}
impl<const Q: u64, const N: usize> fmt::Debug for Rq<Q, N> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.fmt(f)?;
Ok(())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_polynomial_ring() {
// the test values used are generated with SageMath
const Q: u64 = 7;
const N: usize = 3;
// p = 1x + 2x^2 + 3x^3 + 4 x^4 + 5 x^5 in R=Z_q[X]/(X^n +1)
let p = Rq::<Q, N>::from_vec_u64(vec![0u64, 1, 2, 3, 4, 5]);
assert_eq!(p.to_string(), "4*x^2 + 4*x + 4 mod Z_7/(X^3+1)");
// try with coefficients bigger than Q
let p = Rq::<Q, N>::from_vec_u64(vec![0u64, 1, Q + 2, 3, 4, 5]);
assert_eq!(p.to_string(), "4*x^2 + 4*x + 4 mod Z_7/(X^3+1)");
// try with other ring
let p = Rq::<7, 4>::from_vec_u64(vec![0u64, 1, 2, 3, 4, 5]);
assert_eq!(p.to_string(), "3*x^3 + 2*x^2 + 3*x + 3 mod Z_7/(X^4+1)");
let p = Rq::<Q, N>::from_vec_u64(vec![0u64, 0, 0, 0, 4, 5]);
assert_eq!(p.to_string(), "2*x^2 + 3*x mod Z_7/(X^3+1)");
let p = Rq::<Q, N>::from_vec_u64(vec![5u64, 4, 5, 2, 1, 0]);
assert_eq!(p.to_string(), "5*x^2 + 3*x + 3 mod Z_7/(X^3+1)");
let a = Rq::<Q, N>::from_vec_u64(vec![0u64, 1, 2, 3, 4, 5]);
assert_eq!(a.to_string(), "4*x^2 + 4*x + 4 mod Z_7/(X^3+1)");
let b = Rq::<Q, N>::from_vec_u64(vec![5u64, 4, 3, 2, 1, 0]);
assert_eq!(b.to_string(), "3*x^2 + 3*x + 3 mod Z_7/(X^3+1)");
// add
assert_eq!((a.clone() + b.clone()).to_string(), "0 mod Z_7/(X^3+1)");
assert_eq!((&a + &b).to_string(), "0 mod Z_7/(X^3+1)");
// assert_eq!((a.0.clone() + b.0.clone()).to_string(), "[0, 0, 0]"); // TODO
// sub
assert_eq!(
(a.clone() - b.clone()).to_string(),
"x^2 + x + 1 mod Z_7/(X^3+1)"
);
}
#[test]
fn test_mul() -> Result<()> {
const Q: u64 = 2u64.pow(16) + 1;
const N: usize = 4;
let a: [u64; N] = [1u64, 2, 3, 4];
let b: [u64; N] = [1u64, 2, 3, 4];
let c: [u64; N] = [65513, 65517, 65531, 20];
test_mul_opt::<Q, N>(a, b, c)?;
let a: [u64; N] = [0u64, 0, 0, 2];
let b: [u64; N] = [0u64, 0, 0, 2];
let c: [u64; N] = [0u64, 0, 65533, 0];
test_mul_opt::<Q, N>(a, b, c)?;
// TODO more testvectors
Ok(())
}
fn test_mul_opt<const Q: u64, const N: usize>(
a: [u64; N],
b: [u64; N],
expected_c: [u64; N],
) -> Result<()> {
let a: [Zq<Q>; N] = array::from_fn(|i| Zq::from_u64(a[i]));
let mut a = Rq::new(a, None);
let b: [Zq<Q>; N] = array::from_fn(|i| Zq::from_u64(b[i]));
let mut b = Rq::new(b, None);
let expected_c: [Zq<Q>; N] = array::from_fn(|i| Zq::from_u64(expected_c[i]));
let expected_c = Rq::new(expected_c, None);
let c = mul_mut(&mut a, &mut b);
assert_eq!(c, expected_c);
Ok(())
}
#[test]
fn test_rq_decompose() -> Result<()> {
const Q: u64 = 16;
const N: usize = 4;
let beta = 4;
let l = 2;
let a = Rq::<Q, N>::from_vec_u64(vec![7u64, 14, 3, 6]);
let d = a.decompose(beta, l);
assert_eq!(
d[0].coeffs().to_vec(),
vec![1u64, 3, 0, 1]
.iter()
.map(|e| Zq::<Q>::from_u64(*e))
.collect::<Vec<_>>()
);
assert_eq!(
d[1].coeffs().to_vec(),
vec![3u64, 2, 3, 2]
.iter()
.map(|e| Zq::<Q>::from_u64(*e))
.collect::<Vec<_>>()
);
Ok(())
}
}