You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

369 lines
9.3 KiB

//! 𝕋_<N,q>[X] = ℝ_<N,q>[X] / ℤ_<N,q>[X], polynomials modulo X^N+1 with
//! coefficients in 𝕋_Q.
//!
//! Note: this is not an algebraic ring, since internal-product is not well
//! defined. But since we work over the discrete torus 𝕋_q, which we identify as
//! 𝕋q = ℤ/qℤ ≈ ℤq, whith q=64. Since we allow product between 𝕋q elements and
//! u64, we fit it into the `Ring` trait (from ring.rs) so that we can compose
//! the 𝕋_<N,q> implementation with the other objects from the code.
use itertools::zip_eq;
use rand::{distributions::Distribution, Rng};
use std::iter::Sum;
use std::ops::{Add, AddAssign, Mul, Neg, Sub, SubAssign};
use crate::{
ring::{Ring, RingParam},
torus::T64,
Rq, Zq,
};
/// 𝕋_<N,Q>[X] = 𝕋<Q>[X]/(X^N +1), polynomials modulo X^N+1 with coefficients in
/// 𝕋, where Q=2^64.
#[derive(Clone, Debug)]
pub struct Tn {
pub param: RingParam,
pub coeffs: Vec<T64>,
}
impl Ring for Tn {
type C = T64;
fn param(&self) -> RingParam {
RingParam {
q: u64::MAX,
n: self.param.n,
}
}
fn coeffs(&self) -> Vec<T64> {
self.coeffs.to_vec()
}
fn zero(param: &RingParam) -> Self {
Self {
param: *param,
coeffs: vec![T64::zero(param); param.n],
}
}
fn rand(mut rng: impl Rng, dist: impl Distribution<f64>, param: &RingParam) -> Self {
Self {
param: *param,
coeffs: std::iter::repeat_with(|| T64::rand(&mut rng, &dist, &param))
.take(param.n)
.collect(),
}
}
fn from_vec(param: &RingParam, coeffs: Vec<Self::C>) -> Self {
let mut p = coeffs;
modulus(param, &mut p);
Self {
param: *param,
coeffs: p,
}
}
fn decompose(&self, beta: u32, l: u32) -> Vec<Self> {
let elems: Vec<Vec<T64>> = self.coeffs.iter().map(|r| r.decompose(beta, l)).collect();
// transpose it
let r: Vec<Vec<T64>> = (0..elems[0].len())
.map(|i| (0..elems.len()).map(|j| elems[j][i]).collect())
.collect();
// convert it to Tn
r.iter()
.map(|a_i| Self::from_vec(&self.param, a_i.clone()))
.collect()
}
fn remodule(&self, p: u64) -> Tn {
todo!()
// Rq::<P, N>::from_vec_u64(self.coeffs().iter().map(|m_i| m_i.0).collect())
}
// fn mod_switch<const P: u64>(&self) -> impl Ring {
fn mod_switch(&self, p: u64) -> Rq {
// unimplemented!()
// TODO WIP
let coeffs = self
.coeffs
.iter()
.map(|c_i| Zq::from_u64(p, c_i.mod_switch(p).0))
.collect();
Rq {
param: RingParam {
q: p,
n: self.param.n,
},
coeffs,
evals: None,
}
}
/// returns [ [(num/den) * self].round() ] mod q
/// ie. performs the multiplication and division over f64, and then it rounds the
/// result, only applying the mod Q at the end
fn mul_div_round(&self, num: u64, den: u64) -> Self {
let r: Vec<T64> = self
.coeffs()
.iter()
.map(|e| T64(((num as f64 * e.0 as f64) / den as f64).round() as u64))
.collect();
Self::from_vec(&self.param, r)
}
}
impl Tn {
// multiply self by X^-h
pub fn left_rotate(&self, h: usize) -> Self {
let n = self.param.n;
let h = h % n;
assert!(h < n);
let c = &self.coeffs;
// c[h], c[h+1], c[h+2], ..., c[n-1], -c[0], -c[1], ..., -c[h-1]
// let r: Vec<T64> = vec![c[h..N], c[0..h].iter().map(|&c_i| -c_i).collect()].concat();
let r: Vec<T64> = c[h..n]
.iter()
.copied()
.chain(c[0..h].iter().map(|&x| -x))
.collect();
Self::from_vec(&self.param, r)
}
pub fn from_vec_u64(param: &RingParam, v: Vec<u64>) -> Self {
let coeffs = v.iter().map(|c| T64(*c)).collect();
Self::from_vec(param, coeffs)
}
}
// apply mod (X^N+1)
pub fn modulus(param: &RingParam, p: &mut Vec<T64>) {
let n = param.n;
if p.len() < n {
return;
}
for i in n..p.len() {
p[i - n] = p[i - n].clone() - p[i].clone();
p[i] = T64::zero(param);
}
p.truncate(n);
}
impl Add<Tn> for Tn {
type Output = Self;
fn add(self, rhs: Self) -> Self {
assert_eq!(self.param, rhs.param);
Self {
param: self.param,
coeffs: zip_eq(self.coeffs, rhs.coeffs)
.map(|(l, r)| l + r)
.collect(),
}
}
}
impl Add<&Tn> for &Tn {
type Output = Tn;
fn add(self, rhs: &Tn) -> Self::Output {
assert_eq!(self.param, rhs.param);
Tn {
param: self.param,
coeffs: zip_eq(self.coeffs.clone(), rhs.coeffs.clone())
.map(|(l, r)| l + r)
.collect(),
}
}
}
impl AddAssign for Tn {
fn add_assign(&mut self, rhs: Self) {
assert_eq!(self.param, rhs.param);
for i in 0..self.param.n {
self.coeffs[i] += rhs.coeffs[i];
}
}
}
impl Sum<Tn> for Tn {
fn sum<I>(mut iter: I) -> Self
where
I: Iterator<Item = Self>,
{
let first = iter.next().unwrap();
iter.fold(first, |acc, x| acc + x)
}
}
impl Sub<Tn> for Tn {
type Output = Self;
fn sub(self, rhs: Self) -> Self {
assert_eq!(self.param, rhs.param);
Self {
param: self.param,
coeffs: zip_eq(self.coeffs, rhs.coeffs)
.map(|(l, r)| l - r)
.collect(),
}
}
}
impl Sub<&Tn> for &Tn {
type Output = Tn;
fn sub(self, rhs: &Tn) -> Self::Output {
assert_eq!(self.param, rhs.param);
Tn {
param: self.param,
coeffs: zip_eq(self.coeffs.clone(), rhs.coeffs.clone())
.map(|(l, r)| l - r)
.collect(),
}
}
}
impl SubAssign for Tn {
fn sub_assign(&mut self, rhs: Self) {
assert_eq!(self.param, rhs.param);
for i in 0..self.param.n {
self.coeffs[i] -= rhs.coeffs[i];
}
}
}
impl Neg for Tn {
type Output = Self;
fn neg(self) -> Self::Output {
Self {
param: self.param,
coeffs: self.coeffs.iter().map(|c_i| -*c_i).collect(),
}
}
}
impl PartialEq for Tn {
fn eq(&self, other: &Self) -> bool {
self.coeffs == other.coeffs && self.param == other.param
}
}
impl Mul<Tn> for Tn {
type Output = Self;
fn mul(self, rhs: Self) -> Self {
// TODO NTT/FFT
naive_poly_mul(&self, &rhs)
}
}
impl Mul<&Tn> for &Tn {
type Output = Tn;
fn mul(self, rhs: &Tn) -> Self::Output {
// TODO NTT/FFT
naive_poly_mul(self, rhs)
}
}
fn naive_poly_mul(poly1: &Tn, poly2: &Tn) -> Tn {
assert_eq!(poly1.param, poly2.param);
let n = poly1.param.n;
let param = poly1.param;
let poly1: Vec<u128> = poly1.coeffs.iter().map(|c| c.0 as u128).collect();
let poly2: Vec<u128> = poly2.coeffs.iter().map(|c| c.0 as u128).collect();
let mut result: Vec<u128> = vec![0; (n * 2) - 1];
for i in 0..n {
for j in 0..n {
result[i + j] = result[i + j] + poly1[i] * poly2[j];
}
}
// apply mod (X^n + 1))
modulus_u128(n, &mut result);
Tn {
param,
coeffs: result.iter().map(|r_i| T64(*r_i as u64)).collect(),
}
}
fn modulus_u128(n: usize, p: &mut Vec<u128>) {
if p.len() < n {
return;
}
for i in n..p.len() {
// p[i - n] = p[i - n].clone() - p[i].clone();
p[i - n] = p[i - n].wrapping_sub(p[i]);
p[i] = 0;
}
p.truncate(n);
}
impl Mul<T64> for Tn {
type Output = Self;
fn mul(self, s: T64) -> Self {
Self {
param: self.param,
coeffs: self.coeffs.iter().map(|c_i| *c_i * s).collect(),
}
}
}
// mul by u64
impl Mul<u64> for Tn {
type Output = Self;
fn mul(self, s: u64) -> Self {
Tn {
param: self.param,
coeffs: self.coeffs.iter().map(|c_i| *c_i * s).collect(),
}
}
}
impl Mul<&u64> for &Tn {
type Output = Tn;
fn mul(self, s: &u64) -> Self::Output {
Tn {
param: self.param,
coeffs: self.coeffs.iter().map(|c_i| c_i * s).collect(),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_left_rotate() {
let param = RingParam { q: u64::MAX, n: 4 };
let f = Tn::from_vec(
&param,
vec![2i64, 3, -4, -1]
.iter()
.map(|c| T64(*c as u64))
.collect(),
);
// expect f*x^-3 == -1 -2x -3x^2 +4x^3
assert_eq!(
f.left_rotate(3),
Tn::from_vec(
&param,
vec![-1i64, -2, -3, 4]
.iter()
.map(|c| T64(*c as u64))
.collect(),
)
);
// expect f*x^-1 == 3 -4x -1x^2 -2x^3
assert_eq!(
f.left_rotate(1),
Tn::from_vec(
&param,
vec![3i64, -4, -1, -2]
.iter()
.map(|c| T64(*c as u64))
.collect(),
)
);
}
}