mirror of
https://github.com/arnaucube/fhe-study.git
synced 2026-01-24 04:33:52 +01:00
626 lines
19 KiB
Rust
626 lines
19 KiB
Rust
//! Generalized LWE.
|
||
//!
|
||
|
||
use anyhow::Result;
|
||
use itertools::zip_eq;
|
||
use rand::Rng;
|
||
use rand_distr::{Normal, Uniform};
|
||
use std::iter::Sum;
|
||
use std::ops::{Add, AddAssign, Mul, Sub};
|
||
|
||
use arith::{Ring, RingParam, Rq, Zq, TR};
|
||
|
||
use crate::glev::GLev;
|
||
|
||
// error deviation for the Gaussian(Normal) distribution
|
||
// sigma=3.2 from: https://eprint.iacr.org/2022/162.pdf page 5
|
||
pub(crate) const ERR_SIGMA: f64 = 3.2;
|
||
|
||
#[derive(Clone, Copy, Debug)]
|
||
pub struct Param {
|
||
pub err_sigma: f64,
|
||
pub ring: RingParam,
|
||
pub k: usize,
|
||
pub t: u64,
|
||
}
|
||
impl Param {
|
||
/// returns the plaintext param
|
||
pub fn pt(&self) -> RingParam {
|
||
// TODO think if maybe return a new truct "PtParam" to differenciate
|
||
// between the ciphertexxt (RingParam) and the plaintext param. Maybe it
|
||
// can be just a wrapper on top of RingParam.
|
||
RingParam {
|
||
q: self.t,
|
||
n: self.ring.n,
|
||
}
|
||
}
|
||
/// returns the LWE param for the given GLWE (self), that is, it uses k=K*N
|
||
/// as the length for the secret key. This follows [2018-421] where
|
||
/// TLWE sk: s \in B^n , where n=K*N
|
||
/// TRLWE sk: s \in B_N[X]^K
|
||
pub fn lwe(&self) -> Self {
|
||
Self {
|
||
err_sigma: ERR_SIGMA,
|
||
ring: RingParam {
|
||
q: self.ring.q,
|
||
n: 1,
|
||
},
|
||
k: self.k * self.ring.n,
|
||
t: self.t,
|
||
}
|
||
}
|
||
}
|
||
|
||
/// GLWE implemented over the `Ring` trait, so that it can be also instantiated
|
||
/// over the Torus polynomials 𝕋_<N,q>[X] = 𝕋_q[X]/ (X^N+1).
|
||
#[derive(Clone, Debug)]
|
||
pub struct GLWE<R: Ring>(pub TR<R>, pub R);
|
||
|
||
#[derive(Clone, Debug)]
|
||
pub struct SecretKey<R: Ring>(pub TR<R>);
|
||
#[derive(Clone, Debug)]
|
||
pub struct PublicKey<R: Ring>(pub R, pub TR<R>);
|
||
|
||
// K GLevs, each KSK_i=l GLWEs
|
||
#[derive(Clone, Debug)]
|
||
pub struct KSK<R: Ring>(Vec<GLev<R>>);
|
||
|
||
impl<R: Ring> GLWE<R> {
|
||
pub fn zero(k: usize, param: &RingParam) -> Self {
|
||
Self(TR::zero(k, ¶m), R::zero(¶m))
|
||
}
|
||
pub fn from_plaintext(k: usize, param: &RingParam, p: R) -> Self {
|
||
Self(TR::zero(k, ¶m), p)
|
||
}
|
||
|
||
pub fn new_key(mut rng: impl Rng, param: &Param) -> Result<(SecretKey<R>, PublicKey<R>)> {
|
||
let Xi_key = Uniform::new(0_f64, 2_f64)?;
|
||
let Xi_err = Normal::new(0_f64, param.err_sigma)?;
|
||
|
||
let s: TR<R> = TR::rand(&mut rng, Xi_key, param.k, ¶m.ring);
|
||
let a: TR<R> = TR::rand(
|
||
&mut rng,
|
||
Uniform::new(0_f64, param.ring.q as f64)?,
|
||
param.k,
|
||
¶m.ring,
|
||
);
|
||
let e = R::rand(&mut rng, Xi_err, ¶m.ring);
|
||
|
||
let pk: PublicKey<R> = PublicKey((&a * &s) + e, a);
|
||
Ok((SecretKey(s), pk))
|
||
}
|
||
pub fn pk_from_sk(mut rng: impl Rng, param: &Param, sk: SecretKey<R>) -> Result<PublicKey<R>> {
|
||
let Xi_err = Normal::new(0_f64, param.err_sigma)?;
|
||
|
||
let a: TR<R> = TR::rand(
|
||
&mut rng,
|
||
Uniform::new(0_f64, param.ring.q as f64)?,
|
||
param.k,
|
||
¶m.ring,
|
||
);
|
||
let e = R::rand(&mut rng, Xi_err, ¶m.ring);
|
||
|
||
let pk: PublicKey<R> = PublicKey((&a * &sk.0) + e, a);
|
||
Ok(pk)
|
||
}
|
||
|
||
pub fn new_ksk(
|
||
mut rng: impl Rng,
|
||
param: &Param,
|
||
beta: u32,
|
||
l: u32,
|
||
sk: &SecretKey<R>,
|
||
new_sk: &SecretKey<R>,
|
||
) -> Result<KSK<R>> {
|
||
debug_assert_eq!(param.k, sk.0.k);
|
||
let k = sk.0.k;
|
||
let r: Vec<GLev<R>> = (0..k)
|
||
.into_iter()
|
||
.map(|i|
|
||
// treat sk_i as the msg being encrypted
|
||
GLev::<R>::encrypt_s(&mut rng, param, beta, l, &new_sk, &sk.0 .r[i]))
|
||
.collect::<Result<Vec<_>>>()?;
|
||
|
||
Ok(KSK(r))
|
||
}
|
||
pub fn key_switch(&self, param: &Param, beta: u32, l: u32, ksk: &KSK<R>) -> Self {
|
||
let (a, b): (TR<R>, R) = (self.0.clone(), self.1.clone()); // TODO rm clones
|
||
|
||
let lhs: GLWE<R> = GLWE(TR::zero(param.k, ¶m.ring), b);
|
||
|
||
// K iterations, ksk.0 contains K times GLev
|
||
let rhs: GLWE<R> = zip_eq(a.r, ksk.0.clone())
|
||
.map(|(a_i, ksk_i)| ksk_i * a_i.decompose(beta, l)) // dot_product
|
||
.sum();
|
||
|
||
lhs - rhs
|
||
}
|
||
|
||
// encrypts with the given SecretKey (instead of PublicKey)
|
||
pub fn encrypt_s(
|
||
mut rng: impl Rng,
|
||
param: &Param,
|
||
sk: &SecretKey<R>,
|
||
m: &R, // already scaled
|
||
) -> Result<Self> {
|
||
let Xi_key = Uniform::new(0_f64, 2_f64)?;
|
||
let Xi_err = Normal::new(0_f64, param.err_sigma)?;
|
||
|
||
let a: TR<R> = TR::rand(&mut rng, Xi_key, param.k, ¶m.ring);
|
||
let e = R::rand(&mut rng, Xi_err, ¶m.ring);
|
||
|
||
let b: R = (&a * &sk.0) + m.clone() + e; // TODO rm clone
|
||
Ok(Self(a, b))
|
||
}
|
||
pub fn encrypt(
|
||
mut rng: impl Rng,
|
||
param: &Param,
|
||
pk: &PublicKey<R>,
|
||
m: &R, // already scaled
|
||
) -> Result<Self> {
|
||
let Xi_key = Uniform::new(0_f64, 2_f64)?;
|
||
let Xi_err = Normal::new(0_f64, param.err_sigma)?;
|
||
|
||
let u: R = R::rand(&mut rng, Xi_key, ¶m.ring);
|
||
|
||
let e0 = R::rand(&mut rng, Xi_err, ¶m.ring);
|
||
let e1 = TR::<R>::rand(&mut rng, Xi_err, param.k, ¶m.ring);
|
||
|
||
let b: R = pk.0.clone() * u.clone() + m.clone() + e0; // TODO rm clones
|
||
let d: TR<R> = &pk.1 * &u + e1;
|
||
|
||
Ok(Self(d, b))
|
||
}
|
||
// returns m' not downscaled
|
||
pub fn decrypt(&self, sk: &SecretKey<R>) -> R {
|
||
let (d, b): (TR<R>, R) = (self.0.clone(), self.1.clone());
|
||
let p: R = b - &d * &sk.0;
|
||
p
|
||
}
|
||
}
|
||
|
||
// Methods for when Ring=Rq<Q,N>
|
||
impl GLWE<Rq> {
|
||
// scale up
|
||
pub fn encode(param: &Param, m: &Rq) -> Rq {
|
||
debug_assert_eq!(param.t, m.param.q);
|
||
let m = m.remodule(param.ring.q);
|
||
let delta = param.ring.q / param.t; // floored
|
||
m * delta
|
||
}
|
||
// scale down
|
||
pub fn decode(param: &Param, m: &Rq) -> Rq {
|
||
let r = m.mul_div_round(param.t, param.ring.q);
|
||
let r: Rq = r.remodule(param.t);
|
||
r
|
||
}
|
||
pub fn mod_switch(&self, p: u64) -> GLWE<Rq> {
|
||
let a: TR<Rq> = TR {
|
||
k: self.0.k,
|
||
r: self.0.r.iter().map(|r| r.mod_switch(p)).collect::<Vec<_>>(),
|
||
};
|
||
let b: Rq = self.1.mod_switch(p);
|
||
GLWE(a, b)
|
||
}
|
||
}
|
||
|
||
impl<R: Ring> Add<GLWE<R>> for GLWE<R> {
|
||
type Output = Self;
|
||
fn add(self, other: Self) -> Self {
|
||
debug_assert_eq!(self.0.k, other.0.k);
|
||
debug_assert_eq!(self.1.param(), other.1.param());
|
||
|
||
let a: TR<R> = self.0 + other.0;
|
||
let b: R = self.1 + other.1;
|
||
Self(a, b)
|
||
}
|
||
}
|
||
|
||
impl<R: Ring> Add<R> for GLWE<R> {
|
||
type Output = Self;
|
||
fn add(self, plaintext: R) -> Self {
|
||
debug_assert_eq!(self.1.param(), plaintext.param());
|
||
|
||
let a: TR<R> = self.0;
|
||
let b: R = self.1 + plaintext;
|
||
Self(a, b)
|
||
}
|
||
}
|
||
impl<R: Ring> AddAssign for GLWE<R> {
|
||
fn add_assign(&mut self, rhs: Self) {
|
||
debug_assert_eq!(self.0.k, rhs.0.k);
|
||
debug_assert_eq!(self.1.param(), rhs.1.param());
|
||
|
||
let k = self.0.k;
|
||
for i in 0..k {
|
||
self.0.r[i] = self.0.r[i].clone() + rhs.0.r[i].clone();
|
||
}
|
||
self.1 = self.1.clone() + rhs.1.clone();
|
||
}
|
||
}
|
||
impl<R: Ring> Sum<GLWE<R>> for GLWE<R> {
|
||
fn sum<I>(mut iter: I) -> Self
|
||
where
|
||
I: Iterator<Item = Self>,
|
||
{
|
||
let first = iter.next().unwrap();
|
||
iter.fold(first, |acc, e| acc + e)
|
||
}
|
||
}
|
||
|
||
impl<R: Ring> Sub<GLWE<R>> for GLWE<R> {
|
||
type Output = Self;
|
||
fn sub(self, other: Self) -> Self {
|
||
debug_assert_eq!(self.0.k, other.0.k);
|
||
debug_assert_eq!(self.1.param(), other.1.param());
|
||
|
||
let a: TR<R> = self.0 - other.0;
|
||
let b: R = self.1 - other.1;
|
||
Self(a, b)
|
||
}
|
||
}
|
||
|
||
impl<R: Ring> Mul<R> for GLWE<R> {
|
||
type Output = Self;
|
||
fn mul(self, plaintext: R) -> Self {
|
||
debug_assert_eq!(self.1.param(), plaintext.param());
|
||
|
||
let a: TR<R> = TR {
|
||
k: self.0.k,
|
||
r: self
|
||
.0
|
||
.r
|
||
.iter()
|
||
.map(|r_i| r_i.clone() * plaintext.clone())
|
||
.collect(),
|
||
};
|
||
let b: R = self.1 * plaintext;
|
||
Self(a, b)
|
||
}
|
||
}
|
||
// for when R = Rq<Q,N>
|
||
// impl<const Q: u64, const N: usize, const K: usize> Mul<Rq<Q, N>> for GLWE<Rq<Q, N>, K> {
|
||
// type Output = Self;
|
||
// fn mul(self, plaintext: Rq<Q, N>) -> Self {
|
||
// // first compute the NTT for plaintext, to avoid computing it at each
|
||
// // iteration, speeding up the multiplications
|
||
// let mut plaintext = plaintext.clone();
|
||
// plaintext.compute_evals();
|
||
//
|
||
// let a: TR<Rq<Q, N>, K> = TR(self.0 .0.iter().map(|r_i| *r_i * plaintext).collect());
|
||
// let b: Rq<Q, N> = self.1 * plaintext;
|
||
// Self(a, b)
|
||
// }
|
||
// }
|
||
|
||
// impl<R: Ring, const K: usize> Mul<R::C> for GLWE<R, K>
|
||
// // where
|
||
// // // R: std::ops::Mul<<R as arith::Ring>::C>,
|
||
// // // Vec<R>: FromIterator<<R as Mul<<R as arith::Ring>::C>>::Output>,
|
||
// // Vec<R>: FromIterator<<R as Mul<<R as arith::Ring>::C>>::Output>,
|
||
// {
|
||
// type Output = Self;
|
||
// fn mul(self, e: R::C) -> Self {
|
||
// let a: TR<R, K> = TR(self.0 .0.iter().map(|r_i| *r_i * e.clone()).collect());
|
||
// let b: R = self.1 * e.clone();
|
||
// Self(a, b)
|
||
// }
|
||
// }
|
||
|
||
// impl<const Q: u64, const N: usize, const K: usize> Mul<Zq<Q>> for GLWE<Q, N, K> {
|
||
// type Output = Self;
|
||
// fn mul(self, e: Zq<Q>) -> Self {
|
||
// let a: TR<Rq<Q, N>, K> = TR(self.0 .0.iter().map(|r_i| *r_i * e).collect());
|
||
// let b: Rq<Q, N> = self.1 * e;
|
||
// Self(a, b)
|
||
// }
|
||
// }
|
||
|
||
#[cfg(test)]
|
||
mod tests {
|
||
use anyhow::Result;
|
||
use rand::distr::Uniform;
|
||
|
||
use super::*;
|
||
|
||
#[test]
|
||
fn test_encrypt_decrypt_ring_nq() -> Result<()> {
|
||
let param = Param {
|
||
err_sigma: ERR_SIGMA,
|
||
ring: RingParam {
|
||
q: 2u64.pow(16) + 1,
|
||
n: 128,
|
||
},
|
||
k: 16,
|
||
t: 32, // plaintext modulus
|
||
};
|
||
type S = GLWE<Rq>;
|
||
|
||
let mut rng = rand::rng();
|
||
let msg_dist = Uniform::new(0_u64, param.t)?;
|
||
|
||
for _ in 0..200 {
|
||
let (sk, pk) = S::new_key(&mut rng, ¶m)?;
|
||
|
||
let m = Rq::rand_u64(&mut rng, msg_dist, ¶m.pt())?; // msg
|
||
let p = S::encode(¶m, &m); // plaintext
|
||
|
||
let c = S::encrypt(&mut rng, ¶m, &pk, &p)?; // ciphertext
|
||
let p_recovered = c.decrypt(&sk);
|
||
let m_recovered = S::decode(¶m, &p_recovered);
|
||
|
||
assert_eq!(m.remodule(param.t), m_recovered.remodule(param.t));
|
||
|
||
// same but using encrypt_s (with sk instead of pk))
|
||
let c = S::encrypt_s(&mut rng, ¶m, &sk, &p)?;
|
||
let p_recovered = c.decrypt(&sk);
|
||
let m_recovered = S::decode(¶m, &p_recovered);
|
||
|
||
assert_eq!(m.remodule(param.t), m_recovered.remodule(param.t));
|
||
}
|
||
|
||
Ok(())
|
||
}
|
||
|
||
use arith::{Tn, T64};
|
||
pub fn t_encode(param: &RingParam, m: &Rq) -> Tn {
|
||
let p = m.param.q; // plaintext space
|
||
let delta = u64::MAX / p; // floored
|
||
let coeffs = m.coeffs();
|
||
Tn {
|
||
param: *param,
|
||
coeffs: coeffs.iter().map(|c_i| T64(c_i.v * delta)).collect(),
|
||
}
|
||
}
|
||
pub fn t_decode(param: &Param, pt: &Tn) -> Rq {
|
||
let pt = pt.mul_div_round(param.t, u64::MAX);
|
||
Rq::from_vec_u64(¶m.pt(), pt.coeffs().iter().map(|c| c.0).collect())
|
||
}
|
||
#[test]
|
||
fn test_encrypt_decrypt_torus() -> Result<()> {
|
||
let param = Param {
|
||
err_sigma: ERR_SIGMA,
|
||
ring: RingParam {
|
||
q: u64::MAX,
|
||
n: 128,
|
||
},
|
||
k: 16,
|
||
t: 32, // plaintext modulus
|
||
};
|
||
type S = GLWE<Tn>;
|
||
|
||
let mut rng = rand::rng();
|
||
let msg_dist = Uniform::new(0_f64, param.t as f64)?;
|
||
|
||
for _ in 0..200 {
|
||
let (sk, pk) = S::new_key(&mut rng, ¶m)?;
|
||
|
||
let m = Rq::rand(&mut rng, msg_dist, ¶m.pt()); // msg
|
||
|
||
let p = t_encode(¶m.ring, &m); // plaintext
|
||
let c = S::encrypt(&mut rng, ¶m, &pk, &p)?; // ciphertext
|
||
let p_recovered = c.decrypt(&sk);
|
||
let m_recovered = t_decode(¶m, &p_recovered);
|
||
|
||
assert_eq!(m, m_recovered);
|
||
|
||
// same but using encrypt_s (with sk instead of pk))
|
||
let c = S::encrypt_s(&mut rng, ¶m, &sk, &p)?;
|
||
let p_recovered = c.decrypt(&sk);
|
||
let m_recovered = t_decode(¶m, &p_recovered);
|
||
|
||
assert_eq!(m, m_recovered);
|
||
}
|
||
|
||
Ok(())
|
||
}
|
||
|
||
#[test]
|
||
fn test_addition() -> Result<()> {
|
||
let param = Param {
|
||
err_sigma: ERR_SIGMA,
|
||
ring: RingParam {
|
||
q: 2u64.pow(16) + 1,
|
||
n: 128,
|
||
},
|
||
k: 16,
|
||
t: 20, // plaintext modulus
|
||
};
|
||
type S = GLWE<Rq>;
|
||
|
||
let mut rng = rand::rng();
|
||
let msg_dist = Uniform::new(0_u64, param.t)?;
|
||
|
||
for _ in 0..200 {
|
||
let (sk, pk) = S::new_key(&mut rng, ¶m)?;
|
||
|
||
let m1 = Rq::rand_u64(&mut rng, msg_dist, ¶m.pt())?;
|
||
let m2 = Rq::rand_u64(&mut rng, msg_dist, ¶m.pt())?;
|
||
let p1: Rq = S::encode(¶m, &m1); // plaintext
|
||
let p2: Rq = S::encode(¶m, &m2); // plaintext
|
||
|
||
let c1 = S::encrypt(&mut rng, ¶m, &pk, &p1)?;
|
||
let c2 = S::encrypt(&mut rng, ¶m, &pk, &p2)?;
|
||
|
||
let c3 = c1 + c2;
|
||
|
||
let p3_recovered = c3.decrypt(&sk);
|
||
let m3_recovered = S::decode(¶m, &p3_recovered);
|
||
|
||
assert_eq!((m1 + m2).remodule(param.t), m3_recovered.remodule(param.t));
|
||
}
|
||
|
||
Ok(())
|
||
}
|
||
|
||
#[test]
|
||
fn test_add_plaintext() -> Result<()> {
|
||
let param = Param {
|
||
err_sigma: ERR_SIGMA,
|
||
ring: RingParam {
|
||
q: 2u64.pow(16) + 1,
|
||
n: 128,
|
||
},
|
||
k: 16,
|
||
t: 32, // plaintext modulus
|
||
};
|
||
type S = GLWE<Rq>;
|
||
|
||
let mut rng = rand::rng();
|
||
let msg_dist = Uniform::new(0_u64, param.t)?;
|
||
|
||
for _ in 0..200 {
|
||
let (sk, pk) = S::new_key(&mut rng, ¶m)?;
|
||
|
||
let m1 = Rq::rand_u64(&mut rng, msg_dist, ¶m.pt())?;
|
||
let m2 = Rq::rand_u64(&mut rng, msg_dist, ¶m.pt())?;
|
||
let p1: Rq = S::encode(¶m, &m1); // plaintext
|
||
let p2: Rq = S::encode(¶m, &m2); // plaintext
|
||
|
||
let c1 = S::encrypt(&mut rng, ¶m, &pk, &p1)?;
|
||
|
||
let c3 = c1 + p2;
|
||
|
||
let p3_recovered = c3.decrypt(&sk);
|
||
let m3_recovered = S::decode(¶m, &p3_recovered);
|
||
|
||
assert_eq!((m1 + m2).remodule(param.t), m3_recovered.remodule(param.t));
|
||
}
|
||
|
||
Ok(())
|
||
}
|
||
|
||
#[test]
|
||
fn test_mul_plaintext() -> Result<()> {
|
||
let param = Param {
|
||
err_sigma: ERR_SIGMA,
|
||
ring: RingParam {
|
||
q: 2u64.pow(16) + 1,
|
||
n: 16,
|
||
},
|
||
k: 16,
|
||
t: 4, // plaintext modulus
|
||
};
|
||
type S = GLWE<Rq>;
|
||
|
||
let mut rng = rand::rng();
|
||
let msg_dist = Uniform::new(0_u64, param.t)?;
|
||
|
||
for _ in 0..200 {
|
||
let (sk, pk) = S::new_key(&mut rng, ¶m)?;
|
||
|
||
let m1 = Rq::rand_u64(&mut rng, msg_dist, ¶m.pt())?;
|
||
let m2 = Rq::rand_u64(&mut rng, msg_dist, ¶m.pt())?;
|
||
let p1: Rq = S::encode(¶m, &m1); // plaintext
|
||
let p2 = m2.remodule(param.ring.q); // notice we don't encode (scale by delta)
|
||
|
||
let c1 = S::encrypt(&mut rng, ¶m, &pk, &p1)?;
|
||
|
||
let c3 = c1 * p2;
|
||
|
||
let p3_recovered: Rq = c3.decrypt(&sk);
|
||
let m3_recovered: Rq = S::decode(¶m, &p3_recovered);
|
||
assert_eq!((m1.to_r() * m2.to_r()).to_rq(param.t), m3_recovered);
|
||
}
|
||
|
||
Ok(())
|
||
}
|
||
|
||
#[test]
|
||
fn test_mod_switch() -> Result<()> {
|
||
let param = Param {
|
||
err_sigma: ERR_SIGMA,
|
||
ring: RingParam {
|
||
q: 2u64.pow(16) + 1,
|
||
n: 8,
|
||
},
|
||
k: 16,
|
||
t: 4, // plaintext modulus, must be a prime or power of a prime
|
||
};
|
||
let new_q: u64 = 2u64.pow(8) + 1;
|
||
// note: wip, Q and P chosen so that P/Q is an integer
|
||
type S = GLWE<Rq>;
|
||
|
||
let mut rng = rand::rng();
|
||
let msg_dist = Uniform::new(0_u64, param.t)?;
|
||
|
||
for _ in 0..200 {
|
||
let (sk, pk) = S::new_key(&mut rng, ¶m)?;
|
||
|
||
let m = Rq::rand_u64(&mut rng, msg_dist, ¶m.pt())?;
|
||
|
||
let p = S::encode(¶m, &m);
|
||
let c = S::encrypt(&mut rng, ¶m, &pk, &p)?;
|
||
|
||
let c2: GLWE<Rq> = c.mod_switch(new_q);
|
||
assert_eq!(c2.1.param.q, new_q);
|
||
let sk2: SecretKey<Rq> = SecretKey(TR {
|
||
k: param.k,
|
||
r: sk.0.r.iter().map(|s_i| s_i.remodule(new_q)).collect(),
|
||
});
|
||
|
||
let p_recovered = c2.decrypt(&sk2);
|
||
let new_param = Param {
|
||
err_sigma: ERR_SIGMA,
|
||
ring: RingParam {
|
||
q: new_q,
|
||
n: param.ring.n,
|
||
},
|
||
k: param.k,
|
||
t: param.t,
|
||
};
|
||
let m_recovered = GLWE::<Rq>::decode(&new_param, &p_recovered);
|
||
|
||
assert_eq!(m.remodule(param.t), m_recovered.remodule(param.t));
|
||
}
|
||
|
||
Ok(())
|
||
}
|
||
|
||
#[test]
|
||
fn test_key_switch() -> Result<()> {
|
||
let param = Param {
|
||
err_sigma: ERR_SIGMA,
|
||
ring: RingParam {
|
||
q: 2u64.pow(16) + 1,
|
||
n: 128,
|
||
},
|
||
k: 16,
|
||
t: 2,
|
||
};
|
||
type S = GLWE<Rq>;
|
||
|
||
let beta: u32 = 2;
|
||
let l: u32 = 16;
|
||
|
||
let mut rng = rand::rng();
|
||
|
||
let (sk, pk) = S::new_key(&mut rng, ¶m)?;
|
||
let (sk2, _) = S::new_key(&mut rng, ¶m)?;
|
||
// ksk to switch from sk to sk2
|
||
let ksk = S::new_ksk(&mut rng, ¶m, beta, l, &sk, &sk2)?;
|
||
|
||
let msg_dist = Uniform::new(0_u64, param.t)?;
|
||
let m = Rq::rand_u64(&mut rng, msg_dist, ¶m.pt())?;
|
||
let p = S::encode(¶m, &m); // plaintext
|
||
//
|
||
let c = S::encrypt_s(&mut rng, ¶m, &sk, &p)?;
|
||
|
||
let c2 = c.key_switch(¶m, beta, l, &ksk);
|
||
|
||
// decrypt with the 2nd secret key
|
||
let p_recovered = c2.decrypt(&sk2);
|
||
let m_recovered = S::decode(¶m, &p_recovered);
|
||
assert_eq!(m.remodule(param.t), m_recovered.remodule(param.t));
|
||
|
||
// do the same but now encrypting with pk
|
||
let c = S::encrypt(&mut rng, ¶m, &pk, &p)?;
|
||
let c2 = c.key_switch(¶m, beta, l, &ksk);
|
||
let p_recovered = c2.decrypt(&sk2);
|
||
let m_recovered = S::decode(¶m, &p_recovered);
|
||
assert_eq!(m, m_recovered);
|
||
|
||
Ok(())
|
||
}
|
||
}
|