use anyhow::Result;
|
|
use itertools::zip_eq;
|
|
use rand::Rng;
|
|
use std::array;
|
|
use std::ops::{Add, Mul};
|
|
|
|
use arith::{Ring, RingParam, Rq, Tn, T64, TR};
|
|
|
|
use crate::tglwe::{PublicKey, SecretKey, TGLWE};
|
|
use gfhe::glwe::{Param, GLWE};
|
|
|
|
/// vector of length K+1 = ([K * TGLev], [1 * TGLev])
|
|
#[derive(Clone, Debug)]
|
|
pub struct TGGSW(pub(crate) Vec<TGLev>, TGLev);
|
|
|
|
impl TGGSW {
|
|
pub fn encrypt_s(
|
|
mut rng: impl Rng,
|
|
param: &Param,
|
|
beta: u32,
|
|
l: u32,
|
|
sk: &SecretKey,
|
|
m: &Tn,
|
|
) -> Result<Self> {
|
|
debug_assert_eq!(sk.0 .0.k, param.k);
|
|
|
|
let a: Vec<TGLev> = (0..param.k)
|
|
.map(|i| TGLev::encrypt_s(&mut rng, param, beta, l, sk, &(&-sk.0 .0.r[i].clone() * m)))
|
|
// TODO rm clone
|
|
.collect::<Result<Vec<_>>>()?;
|
|
let b: TGLev = TGLev::encrypt_s(&mut rng, ¶m, beta, l, sk, m)?;
|
|
Ok(Self(a, b))
|
|
}
|
|
|
|
pub fn decrypt(&self, sk: &SecretKey, beta: u32) -> Tn {
|
|
self.1.decrypt(sk, beta)
|
|
}
|
|
|
|
pub fn cmux(bit: Self, ct1: TGLWE, ct2: TGLWE) -> TGLWE {
|
|
ct1.clone() + (bit * (ct2 - ct1))
|
|
}
|
|
}
|
|
|
|
/// External product tggsw x tglwe
|
|
impl Mul<TGLWE> for TGGSW {
|
|
type Output = TGLWE;
|
|
|
|
fn mul(self, tglwe: TGLWE) -> TGLWE {
|
|
let beta: u32 = 2;
|
|
let l: u32 = 64; // TODO wip
|
|
|
|
let tglwe_ab: Vec<Tn> = [tglwe.0 .0.r.clone(), vec![tglwe.0 .1]].concat();
|
|
|
|
let tgsw_ab: Vec<TGLev> = [self.0.clone(), vec![self.1]].concat();
|
|
assert_eq!(tgsw_ab.len(), tglwe_ab.len());
|
|
|
|
let r: TGLWE = zip_eq(tgsw_ab, tglwe_ab)
|
|
.map(|(tlev_i, tglwe_i)| tlev_i * tglwe_i.decompose(beta, l))
|
|
.sum();
|
|
r
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub struct TGLev(pub(crate) Vec<TGLWE>);
|
|
|
|
impl TGLev {
|
|
pub fn encode(param: &Param, m: &Rq) -> Tn {
|
|
debug_assert_eq!(param.t, m.param.q); // plaintext modulus
|
|
|
|
Tn {
|
|
param: param.ring,
|
|
coeffs: m.coeffs().iter().map(|c_i| T64(c_i.v)).collect(),
|
|
}
|
|
}
|
|
pub fn decode(param: &Param, p: &Tn) -> Rq {
|
|
Rq::from_vec_u64(¶m.pt(), p.coeffs().iter().map(|c| c.0).collect())
|
|
}
|
|
pub fn encrypt(
|
|
mut rng: impl Rng,
|
|
param: &Param,
|
|
beta: u32,
|
|
l: u32,
|
|
pk: &PublicKey,
|
|
m: &Tn,
|
|
) -> Result<Self> {
|
|
let tlev: Vec<TGLWE> = (1..l + 1)
|
|
.map(|i| {
|
|
TGLWE::encrypt(
|
|
&mut rng,
|
|
¶m,
|
|
pk,
|
|
&(m * &(u64::MAX / beta.pow(i as u32) as u64)),
|
|
)
|
|
})
|
|
.collect::<Result<Vec<_>>>()?;
|
|
|
|
Ok(Self(tlev))
|
|
}
|
|
pub fn encrypt_s(
|
|
mut rng: impl Rng,
|
|
param: &Param,
|
|
_beta: u32, // TODO rm, and make beta=2 always
|
|
l: u32,
|
|
sk: &SecretKey,
|
|
m: &Tn,
|
|
) -> Result<Self> {
|
|
let tlev: Vec<TGLWE> = (1..l as u64 + 1)
|
|
.map(|i| {
|
|
let aux = if i < 64 {
|
|
m * &(u64::MAX / (1u64 << i))
|
|
} else {
|
|
// 1<<64 would overflow, and anyways we're dividing u64::MAX
|
|
// by it, which would be equal to 1
|
|
m.clone() // TODO rm clone
|
|
};
|
|
TGLWE::encrypt_s(&mut rng, ¶m, sk, &aux)
|
|
})
|
|
.collect::<Result<Vec<_>>>()?;
|
|
|
|
Ok(Self(tlev))
|
|
}
|
|
|
|
pub fn decrypt(&self, sk: &SecretKey, beta: u32) -> Tn {
|
|
let pt = self.0[0].decrypt(sk);
|
|
pt.mul_div_round(beta as u64, u64::MAX)
|
|
}
|
|
}
|
|
|
|
impl TGLev {
|
|
pub fn iter(&self) -> std::slice::Iter<TGLWE> {
|
|
self.0.iter()
|
|
}
|
|
}
|
|
|
|
// dot product between a TGLev and Vec<Tn<N>>, usually Vec<Tn<N>> comes from a
|
|
// decomposition of Tn<N>
|
|
// TGLev * Vec<Tn<N>> --> TGLWE
|
|
impl Mul<Vec<Tn>> for TGLev {
|
|
type Output = TGLWE;
|
|
fn mul(self, v: Vec<Tn>) -> Self::Output {
|
|
assert_eq!(self.0.len(), v.len());
|
|
|
|
// l TGLWES
|
|
let tlwes: Vec<TGLWE> = self.0;
|
|
let r: TGLWE = zip_eq(v, tlwes).map(|(a_d_i, glwe_i)| glwe_i * a_d_i).sum();
|
|
r
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use anyhow::Result;
|
|
use rand::distributions::Uniform;
|
|
|
|
use super::*;
|
|
#[test]
|
|
fn test_external_product() -> Result<()> {
|
|
let param = Param {
|
|
err_sigma: crate::ERR_SIGMA,
|
|
ring: RingParam { q: u64::MAX, n: 64 },
|
|
k: 4,
|
|
t: 16, // plaintext modulus
|
|
};
|
|
|
|
let beta: u32 = 2;
|
|
let l: u32 = 64;
|
|
|
|
let mut rng = rand::thread_rng();
|
|
let msg_dist = Uniform::new(0_u64, param.t);
|
|
|
|
for _ in 0..50 {
|
|
let (sk, _) = TGLWE::new_key(&mut rng, ¶m)?;
|
|
|
|
let m1: Rq = Rq::rand_u64(&mut rng, msg_dist, ¶m.pt())?;
|
|
let p1: Tn = TGLev::encode(¶m, &m1);
|
|
|
|
let m2: Rq = Rq::rand_u64(&mut rng, msg_dist, ¶m.pt())?;
|
|
let p2: Tn = TGLWE::encode(¶m, &m2); // scaled by delta
|
|
|
|
let tgsw = TGGSW::encrypt_s(&mut rng, ¶m, beta, l, &sk, &p1)?;
|
|
let tlwe = TGLWE::encrypt_s(&mut rng, ¶m, &sk, &p2)?;
|
|
|
|
let res: TGLWE = tgsw * tlwe;
|
|
|
|
// let p_recovered = res.decrypt(&sk, beta);
|
|
let p_recovered = res.decrypt(&sk);
|
|
// downscaled by delta^-1
|
|
let res_recovered = TGLWE::decode(¶m, &p_recovered);
|
|
|
|
// assert_eq!(m1 * m2, m_recovered);
|
|
assert_eq!((m1.to_r() * m2.to_r()).to_rq(param.t), res_recovered);
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
}
|