use anyhow::Result;
|
|
use itertools::zip_eq;
|
|
use rand::Rng;
|
|
use std::ops::Mul;
|
|
|
|
use arith::{Ring, RingParam, Rq, T64};
|
|
|
|
use crate::tlwe::{PublicKey, SecretKey, TLWE};
|
|
use gfhe::glwe::Param;
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub struct TLev(pub(crate) Vec<TLWE>);
|
|
|
|
impl TLev {
|
|
pub fn encode(param: &Param, m: &Rq) -> T64 {
|
|
assert_eq!(m.param.n, 1);
|
|
assert_eq!(param.t, m.param.q);
|
|
|
|
let coeffs = m.coeffs();
|
|
T64(coeffs[0].v) // N=1, so take the only coeff
|
|
}
|
|
pub fn decode(param: &Param, p: &T64) -> Rq {
|
|
Rq::from_vec_u64(
|
|
&RingParam { q: param.t, n: 1 },
|
|
p.coeffs().iter().map(|c| c.0).collect(),
|
|
)
|
|
}
|
|
pub fn encrypt(
|
|
mut rng: impl Rng,
|
|
param: &Param,
|
|
beta: u32,
|
|
l: u32,
|
|
pk: &PublicKey,
|
|
m: &T64,
|
|
) -> Result<Self> {
|
|
debug_assert_eq!(pk.1.k, param.k);
|
|
|
|
let tlev: Vec<TLWE> = (1..l as u64 + 1)
|
|
.map(|i| {
|
|
let aux = if i < 64 {
|
|
*m * (u64::MAX / (1u64 << i))
|
|
} else {
|
|
// 1<<64 would overflow, and anyways we're dividing u64::MAX
|
|
// by it, which would be equal to 1
|
|
*m
|
|
};
|
|
TLWE::encrypt(&mut rng, param, pk, &aux)
|
|
})
|
|
.collect::<Result<Vec<_>>>()?;
|
|
|
|
Ok(Self(tlev))
|
|
}
|
|
pub fn encrypt_s(
|
|
mut rng: impl Rng,
|
|
param: &Param,
|
|
_beta: u32, // TODO rm, and make beta=2 always
|
|
l: u32,
|
|
sk: &SecretKey,
|
|
m: &T64,
|
|
) -> Result<Self> {
|
|
debug_assert_eq!(sk.0 .0.k, param.k);
|
|
|
|
let tlev: Vec<TLWE> = (1..l as u64 + 1)
|
|
.map(|i| {
|
|
let aux = if i < 64 {
|
|
*m * (u64::MAX / (1u64 << i))
|
|
} else {
|
|
// 1<<64 would overflow, and anyways we're dividing u64::MAX
|
|
// by it, which would be equal to 1
|
|
*m
|
|
};
|
|
TLWE::encrypt_s(&mut rng, ¶m, sk, &aux)
|
|
})
|
|
.collect::<Result<Vec<_>>>()?;
|
|
|
|
Ok(Self(tlev))
|
|
}
|
|
|
|
pub fn decrypt(&self, sk: &SecretKey, beta: u32) -> T64 {
|
|
let pt = self.0[0].decrypt(sk);
|
|
pt.mul_div_round(beta as u64, u64::MAX)
|
|
}
|
|
}
|
|
// TODO review u64::MAX, since is -1 of the value we actually want
|
|
|
|
impl TLev {
|
|
pub fn iter(&self) -> std::slice::Iter<TLWE> {
|
|
self.0.iter()
|
|
}
|
|
}
|
|
|
|
// dot product between a TLev and Vec<T64>, usually Vec<T64> comes from a
|
|
// decomposition of T64
|
|
// TLev * Vec<T64> --> TLWE
|
|
impl Mul<Vec<T64>> for TLev {
|
|
type Output = TLWE;
|
|
fn mul(self, v: Vec<T64>) -> Self::Output {
|
|
assert_eq!(self.0.len(), v.len());
|
|
|
|
// l TLWES
|
|
let tlwes: Vec<TLWE> = self.0;
|
|
let r: TLWE = zip_eq(v, tlwes).map(|(a_d_i, glwe_i)| glwe_i * a_d_i).sum();
|
|
r
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use anyhow::Result;
|
|
use rand::distributions::Uniform;
|
|
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn test_encrypt_decrypt() -> Result<()> {
|
|
let param = Param {
|
|
err_sigma: crate::ERR_SIGMA,
|
|
ring: RingParam { q: u64::MAX, n: 1 },
|
|
k: 16,
|
|
t: 2, // plaintext modulus
|
|
};
|
|
|
|
let beta: u32 = 2;
|
|
let l: u32 = 16;
|
|
|
|
let mut rng = rand::thread_rng();
|
|
let msg_dist = Uniform::new(0_u64, param.t);
|
|
|
|
for _ in 0..200 {
|
|
let (sk, pk) = TLWE::new_key(&mut rng, ¶m)?;
|
|
|
|
let m: Rq = Rq::rand_u64(&mut rng, msg_dist, ¶m.pt())?;
|
|
let p: T64 = TLev::encode(¶m, &m); // plaintext
|
|
|
|
let c = TLev::encrypt(&mut rng, ¶m, beta, l, &pk, &p)?;
|
|
let p_recovered = c.decrypt(&sk, beta);
|
|
let m_recovered = TLev::decode(¶m, &p_recovered);
|
|
|
|
assert_eq!(m.remodule(param.t), m_recovered.remodule(param.t));
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn test_tlev_vect64_product() -> Result<()> {
|
|
let param = Param {
|
|
err_sigma: 0.1, // WIP
|
|
ring: RingParam { q: u64::MAX, n: 1 },
|
|
k: 16,
|
|
t: 2, // plaintext modulus
|
|
};
|
|
|
|
let beta: u32 = 2;
|
|
// let l: u32 = 16;
|
|
let l: u32 = 64;
|
|
|
|
let mut rng = rand::thread_rng();
|
|
let msg_dist = Uniform::new(0_u64, param.t);
|
|
|
|
for _ in 0..200 {
|
|
let (sk, pk) = TLWE::new_key(&mut rng, ¶m)?;
|
|
|
|
let m1: Rq = Rq::rand_u64(&mut rng, msg_dist, ¶m.pt())?;
|
|
let m2: Rq = Rq::rand_u64(&mut rng, msg_dist, ¶m.pt())?;
|
|
let p1: T64 = TLev::encode(¶m, &m1);
|
|
let p2: T64 = TLev::encode(¶m, &m2);
|
|
|
|
let c1 = TLev::encrypt(&mut rng, ¶m, beta, l, &pk, &p1)?;
|
|
let c2 = p2.decompose(beta, l);
|
|
|
|
let c3 = c1 * c2;
|
|
|
|
let p_recovered = c3.decrypt(&sk);
|
|
let m_recovered = TLev::decode(¶m, &p_recovered);
|
|
|
|
assert_eq!((m1.to_r() * m2.to_r()).to_rq(param.t), m_recovered);
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
}
|