Port ProtoGalaxy initial version from https://github.com/arnaucube/protogalaxy-poc adapting it to the current folding-schemes lib, which is a first iteration that implements the Lagrange-basis version from [ProtoGalaxy](https://eprint.iacr.org/2023/1106) folding scheme. There are some pending optimizations, but is a first step towards integrating ProtoGalaxy in the library.main
@ -1,5 +1,4 @@ |
|||||
pub mod circuits;
|
pub mod circuits;
|
||||
#[cfg(feature = "hypernova")]
|
|
||||
pub mod hypernova;
|
pub mod hypernova;
|
||||
#[cfg(feature = "nova")]
|
|
||||
pub mod nova;
|
pub mod nova;
|
||||
|
pub mod protogalaxy;
|
@ -0,0 +1,608 @@ |
|||||
|
/// Implements the scheme described in [ProtoGalaxy](https://eprint.iacr.org/2023/1106.pdf)
|
||||
|
use ark_crypto_primitives::sponge::Absorb;
|
||||
|
use ark_ec::{CurveGroup, Group};
|
||||
|
use ark_ff::PrimeField;
|
||||
|
use ark_poly::{
|
||||
|
univariate::{DensePolynomial, SparsePolynomial},
|
||||
|
DenseUVPolynomial, EvaluationDomain, Evaluations, GeneralEvaluationDomain, Polynomial,
|
||||
|
};
|
||||
|
use ark_std::log2;
|
||||
|
use ark_std::{cfg_into_iter, Zero};
|
||||
|
use rayon::iter::{IntoParallelIterator, ParallelIterator};
|
||||
|
use std::marker::PhantomData;
|
||||
|
use std::ops::Add;
|
||||
|
|
||||
|
use super::traits::ProtoGalaxyTranscript;
|
||||
|
use super::utils::{all_powers, betas_star, exponential_powers};
|
||||
|
use super::ProtoGalaxyError;
|
||||
|
use super::{CommittedInstance, Witness};
|
||||
|
|
||||
|
use crate::ccs::r1cs::R1CS;
|
||||
|
use crate::transcript::Transcript;
|
||||
|
use crate::utils::{bit::bit_decompose, vec::*};
|
||||
|
use crate::Error;
|
||||
|
|
||||
|
#[derive(Clone, Debug)]
|
||||
|
/// Implements the protocol described in section 4 of
|
||||
|
/// [ProtoGalaxy](https://eprint.iacr.org/2023/1106.pdf)
|
||||
|
pub struct Folding<C: CurveGroup> {
|
||||
|
_phantom: PhantomData<C>,
|
||||
|
}
|
||||
|
impl<C: CurveGroup> Folding<C>
|
||||
|
where
|
||||
|
<C as Group>::ScalarField: Absorb,
|
||||
|
<C as CurveGroup>::BaseField: Absorb,
|
||||
|
{
|
||||
|
#![allow(clippy::type_complexity)]
|
||||
|
/// implements the non-interactive Prover from the folding scheme described in section 4
|
||||
|
pub fn prove(
|
||||
|
transcript: &mut (impl Transcript<C> + ProtoGalaxyTranscript<C>),
|
||||
|
r1cs: &R1CS<C::ScalarField>,
|
||||
|
// running instance
|
||||
|
instance: &CommittedInstance<C>,
|
||||
|
w: &Witness<C::ScalarField>,
|
||||
|
// incomming instances
|
||||
|
vec_instances: &[CommittedInstance<C>],
|
||||
|
vec_w: &[Witness<C::ScalarField>],
|
||||
|
) -> Result<
|
||||
|
(
|
||||
|
CommittedInstance<C>,
|
||||
|
Witness<C::ScalarField>,
|
||||
|
Vec<C::ScalarField>, // F_X coeffs
|
||||
|
Vec<C::ScalarField>, // K_X coeffs
|
||||
|
),
|
||||
|
Error,
|
||||
|
> {
|
||||
|
if vec_instances.len() != vec_w.len() {
|
||||
|
return Err(Error::NotSameLength(
|
||||
|
"vec_instances.len()".to_string(),
|
||||
|
vec_instances.len(),
|
||||
|
"vec_w.len()".to_string(),
|
||||
|
vec_w.len(),
|
||||
|
));
|
||||
|
}
|
||||
|
let d = 2; // for the moment hardcoded to 2 since it only supports R1CS
|
||||
|
let k = vec_instances.len();
|
||||
|
let t = instance.betas.len();
|
||||
|
let n = r1cs.A.n_cols;
|
||||
|
if w.w.len() != n {
|
||||
|
return Err(Error::NotSameLength(
|
||||
|
"w.w.len()".to_string(),
|
||||
|
w.w.len(),
|
||||
|
"n".to_string(),
|
||||
|
n,
|
||||
|
));
|
||||
|
}
|
||||
|
if log2(n) as usize != t {
|
||||
|
return Err(Error::NotEqual);
|
||||
|
}
|
||||
|
if !(k + 1).is_power_of_two() {
|
||||
|
return Err(Error::ProtoGalaxy(ProtoGalaxyError::WrongNumInstances(k)));
|
||||
|
}
|
||||
|
|
||||
|
// absorb the committed instances
|
||||
|
transcript.absorb_committed_instance(instance)?;
|
||||
|
for ci in vec_instances.iter() {
|
||||
|
transcript.absorb_committed_instance(ci)?;
|
||||
|
}
|
||||
|
|
||||
|
let delta = transcript.get_challenge();
|
||||
|
let deltas = exponential_powers(delta, t);
|
||||
|
|
||||
|
let f_w = eval_f(r1cs, &w.w)?;
|
||||
|
|
||||
|
// F(X)
|
||||
|
let mut F_X: SparsePolynomial<C::ScalarField> = SparsePolynomial::zero();
|
||||
|
for (i, f_w_i) in f_w.iter().enumerate() {
|
||||
|
let lhs = pow_i_over_x::<C::ScalarField>(i, &instance.betas, &deltas)?;
|
||||
|
let curr = &lhs * *f_w_i;
|
||||
|
F_X = F_X.add(curr);
|
||||
|
}
|
||||
|
|
||||
|
let F_X_dense = DensePolynomial::from(F_X.clone());
|
||||
|
transcript.absorb_vec(&F_X_dense.coeffs);
|
||||
|
|
||||
|
let alpha = transcript.get_challenge();
|
||||
|
|
||||
|
// eval F(alpha)
|
||||
|
let F_alpha = F_X.evaluate(&alpha);
|
||||
|
|
||||
|
// betas*
|
||||
|
let betas_star = betas_star(&instance.betas, &deltas, alpha);
|
||||
|
|
||||
|
// sanity check: check that the new randomized instance (the original instance but with
|
||||
|
// 'refreshed' randomness) satisfies the relation.
|
||||
|
#[cfg(test)]
|
||||
|
tests::check_instance(
|
||||
|
r1cs,
|
||||
|
&CommittedInstance {
|
||||
|
phi: instance.phi,
|
||||
|
betas: betas_star.clone(),
|
||||
|
e: F_alpha,
|
||||
|
},
|
||||
|
w,
|
||||
|
)?;
|
||||
|
|
||||
|
let ws: Vec<Vec<C::ScalarField>> = std::iter::once(w.w.clone())
|
||||
|
.chain(
|
||||
|
vec_w
|
||||
|
.iter()
|
||||
|
.map(|wj| {
|
||||
|
if wj.w.len() != n {
|
||||
|
return Err(Error::NotSameLength(
|
||||
|
"wj.w.len()".to_string(),
|
||||
|
wj.w.len(),
|
||||
|
"n".to_string(),
|
||||
|
n,
|
||||
|
));
|
||||
|
}
|
||||
|
Ok(wj.w.clone())
|
||||
|
})
|
||||
|
.collect::<Result<Vec<Vec<C::ScalarField>>, Error>>()?,
|
||||
|
)
|
||||
|
.collect::<Vec<Vec<C::ScalarField>>>();
|
||||
|
|
||||
|
let H =
|
||||
|
GeneralEvaluationDomain::<C::ScalarField>::new(k + 1).ok_or(Error::NewDomainFail)?;
|
||||
|
let G_domain = GeneralEvaluationDomain::<C::ScalarField>::new((d * k) + 1)
|
||||
|
.ok_or(Error::NewDomainFail)?;
|
||||
|
let L_X: Vec<DensePolynomial<C::ScalarField>> = lagrange_polys(H);
|
||||
|
|
||||
|
// K(X) computation in a naive way, next iterations will compute K(X) as described in Claim
|
||||
|
// 4.5 of the paper.
|
||||
|
let mut G_evals: Vec<C::ScalarField> = vec![C::ScalarField::zero(); G_domain.size()];
|
||||
|
for (hi, h) in G_domain.elements().enumerate() {
|
||||
|
// each iteration evaluates G(h)
|
||||
|
// inner = L_0(x) * w + \sum_k L_i(x) * w_j
|
||||
|
let mut inner: Vec<C::ScalarField> = vec![C::ScalarField::zero(); ws[0].len()];
|
||||
|
for (i, w) in ws.iter().enumerate() {
|
||||
|
// Li_w_h = (Li(X)*wj)(h) = Li(h) * wj
|
||||
|
let mut Liw_h: Vec<C::ScalarField> = vec![C::ScalarField::zero(); w.len()];
|
||||
|
for (j, wj) in w.iter().enumerate() {
|
||||
|
Liw_h[j] = (&L_X[i] * *wj).evaluate(&h);
|
||||
|
}
|
||||
|
|
||||
|
for j in 0..inner.len() {
|
||||
|
inner[j] += Liw_h[j];
|
||||
|
}
|
||||
|
}
|
||||
|
let f_ev = eval_f(r1cs, &inner)?;
|
||||
|
|
||||
|
let mut Gsum = C::ScalarField::zero();
|
||||
|
for (i, f_ev_i) in f_ev.iter().enumerate() {
|
||||
|
let pow_i_betas = pow_i(i, &betas_star);
|
||||
|
let curr = pow_i_betas * f_ev_i;
|
||||
|
Gsum += curr;
|
||||
|
}
|
||||
|
G_evals[hi] = Gsum;
|
||||
|
}
|
||||
|
let G_X: DensePolynomial<C::ScalarField> =
|
||||
|
Evaluations::<C::ScalarField>::from_vec_and_domain(G_evals, G_domain).interpolate();
|
||||
|
let Z_X: DensePolynomial<C::ScalarField> = H.vanishing_polynomial().into();
|
||||
|
// K(X) = (G(X) - F(alpha)*L_0(X)) / Z(X)
|
||||
|
// Notice that L0(X)*F(a) will be 0 in the native case (the instance of the first folding
|
||||
|
// iteration case).
|
||||
|
let L0_e = &L_X[0] * F_alpha;
|
||||
|
let G_L0e = &G_X - &L0_e;
|
||||
|
// Pending optimization: move division by Z_X to the prev loop
|
||||
|
let (K_X, remainder) = G_L0e.divide_by_vanishing_poly(H).ok_or(Error::ProtoGalaxy(
|
||||
|
ProtoGalaxyError::CouldNotDivideByVanishing,
|
||||
|
))?;
|
||||
|
if !remainder.is_zero() {
|
||||
|
return Err(Error::ProtoGalaxy(ProtoGalaxyError::RemainderNotZero));
|
||||
|
}
|
||||
|
|
||||
|
transcript.absorb_vec(&K_X.coeffs);
|
||||
|
|
||||
|
let gamma = transcript.get_challenge();
|
||||
|
|
||||
|
let e_star =
|
||||
|
F_alpha * L_X[0].evaluate(&gamma) + Z_X.evaluate(&gamma) * K_X.evaluate(&gamma);
|
||||
|
|
||||
|
let mut phi_star: C = instance.phi * L_X[0].evaluate(&gamma);
|
||||
|
for i in 0..k {
|
||||
|
phi_star += vec_instances[i].phi * L_X[i + 1].evaluate(&gamma);
|
||||
|
}
|
||||
|
let mut w_star: Vec<C::ScalarField> = vec_scalar_mul(&w.w, &L_X[0].evaluate(&gamma));
|
||||
|
let mut r_w_star: C::ScalarField = w.r_w * L_X[0].evaluate(&gamma);
|
||||
|
for i in 0..k {
|
||||
|
let L_X_at_i1 = L_X[i + 1].evaluate(&gamma);
|
||||
|
w_star = vec_add(&w_star, &vec_scalar_mul(&vec_w[i].w, &L_X_at_i1))?;
|
||||
|
r_w_star += vec_w[i].r_w * L_X_at_i1;
|
||||
|
}
|
||||
|
|
||||
|
Ok((
|
||||
|
CommittedInstance {
|
||||
|
betas: betas_star,
|
||||
|
phi: phi_star,
|
||||
|
e: e_star,
|
||||
|
},
|
||||
|
Witness {
|
||||
|
w: w_star,
|
||||
|
r_w: r_w_star,
|
||||
|
},
|
||||
|
F_X_dense.coeffs,
|
||||
|
K_X.coeffs,
|
||||
|
))
|
||||
|
}
|
||||
|
|
||||
|
/// implements the non-interactive Verifier from the folding scheme described in section 4
|
||||
|
pub fn verify(
|
||||
|
transcript: &mut (impl Transcript<C> + ProtoGalaxyTranscript<C>),
|
||||
|
r1cs: &R1CS<C::ScalarField>,
|
||||
|
// running instance
|
||||
|
instance: &CommittedInstance<C>,
|
||||
|
// incomming instances
|
||||
|
vec_instances: &[CommittedInstance<C>],
|
||||
|
// polys from P
|
||||
|
F_coeffs: Vec<C::ScalarField>,
|
||||
|
K_coeffs: Vec<C::ScalarField>,
|
||||
|
) -> Result<CommittedInstance<C>, Error> {
|
||||
|
let t = instance.betas.len();
|
||||
|
let n = r1cs.A.n_cols;
|
||||
|
|
||||
|
// absorb the committed instances
|
||||
|
transcript.absorb_committed_instance(instance)?;
|
||||
|
for ci in vec_instances.iter() {
|
||||
|
transcript.absorb_committed_instance(ci)?;
|
||||
|
}
|
||||
|
|
||||
|
let delta = transcript.get_challenge();
|
||||
|
let deltas = exponential_powers(delta, t);
|
||||
|
|
||||
|
transcript.absorb_vec(&F_coeffs);
|
||||
|
|
||||
|
let alpha = transcript.get_challenge();
|
||||
|
let alphas = all_powers(alpha, n);
|
||||
|
|
||||
|
// F(alpha) = e + \sum_t F_i * alpha^i
|
||||
|
let mut F_alpha = instance.e;
|
||||
|
for (i, F_i) in F_coeffs.iter().skip(1).enumerate() {
|
||||
|
F_alpha += *F_i * alphas[i + 1];
|
||||
|
}
|
||||
|
|
||||
|
let betas_star = betas_star(&instance.betas, &deltas, alpha);
|
||||
|
|
||||
|
let k = vec_instances.len();
|
||||
|
let H =
|
||||
|
GeneralEvaluationDomain::<C::ScalarField>::new(k + 1).ok_or(Error::NewDomainFail)?;
|
||||
|
let L_X: Vec<DensePolynomial<C::ScalarField>> = lagrange_polys(H);
|
||||
|
let Z_X: DensePolynomial<C::ScalarField> = H.vanishing_polynomial().into();
|
||||
|
let K_X: DensePolynomial<C::ScalarField> =
|
||||
|
DensePolynomial::<C::ScalarField>::from_coefficients_vec(K_coeffs);
|
||||
|
|
||||
|
transcript.absorb_vec(&K_X.coeffs);
|
||||
|
|
||||
|
let gamma = transcript.get_challenge();
|
||||
|
|
||||
|
let e_star =
|
||||
|
F_alpha * L_X[0].evaluate(&gamma) + Z_X.evaluate(&gamma) * K_X.evaluate(&gamma);
|
||||
|
|
||||
|
let mut phi_star: C = instance.phi * L_X[0].evaluate(&gamma);
|
||||
|
for i in 0..k {
|
||||
|
phi_star += vec_instances[i].phi * L_X[i + 1].evaluate(&gamma);
|
||||
|
}
|
||||
|
|
||||
|
// return the folded instance
|
||||
|
Ok(CommittedInstance {
|
||||
|
betas: betas_star,
|
||||
|
phi: phi_star,
|
||||
|
e: e_star,
|
||||
|
})
|
||||
|
}
|
||||
|
}
|
||||
|
|
||||
|
// naive impl of pow_i for betas, assuming that betas=(b, b^2, b^4, ..., b^{2^{t-1}})
|
||||
|
fn pow_i<F: PrimeField>(i: usize, betas: &Vec<F>) -> F {
|
||||
|
// WIP check if makes more sense to do it with ifs instead of arithmetic
|
||||
|
|
||||
|
let n = 2_u64.pow(betas.len() as u32);
|
||||
|
let b = bit_decompose(i as u64, n as usize);
|
||||
|
|
||||
|
let mut r: F = F::one();
|
||||
|
for (j, beta_j) in betas.iter().enumerate() {
|
||||
|
let mut b_j = F::zero();
|
||||
|
if b[j] {
|
||||
|
b_j = F::one();
|
||||
|
}
|
||||
|
r *= (F::one() - b_j) + b_j * beta_j;
|
||||
|
}
|
||||
|
r
|
||||
|
}
|
||||
|
|
||||
|
// Pending optimization: instead of this approach use Claim 4.4 from the paper.
|
||||
|
fn pow_i_over_x<F: PrimeField>(
|
||||
|
i: usize,
|
||||
|
betas: &Vec<F>,
|
||||
|
deltas: &Vec<F>,
|
||||
|
) -> Result<SparsePolynomial<F>, Error> {
|
||||
|
if betas.len() != deltas.len() {
|
||||
|
return Err(Error::NotSameLength(
|
||||
|
"betas.len()".to_string(),
|
||||
|
betas.len(),
|
||||
|
"deltas.len()".to_string(),
|
||||
|
deltas.len(),
|
||||
|
));
|
||||
|
}
|
||||
|
|
||||
|
let n = 2_u64.pow(betas.len() as u32);
|
||||
|
let b = bit_decompose(i as u64, n as usize);
|
||||
|
|
||||
|
let mut r: SparsePolynomial<F> =
|
||||
|
SparsePolynomial::<F>::from_coefficients_vec(vec![(0, F::one())]); // start with r(x) = 1
|
||||
|
for (j, beta_j) in betas.iter().enumerate() {
|
||||
|
if b[j] {
|
||||
|
let curr: SparsePolynomial<F> =
|
||||
|
SparsePolynomial::<F>::from_coefficients_vec(vec![(0, *beta_j), (1, deltas[j])]);
|
||||
|
r = r.mul(&curr);
|
||||
|
}
|
||||
|
}
|
||||
|
Ok(r)
|
||||
|
}
|
||||
|
|
||||
|
// lagrange_polys method from caulk: https://github.com/caulk-crypto/caulk/tree/8210b51fb8a9eef4335505d1695c44ddc7bf8170/src/multi/setup.rs#L300
|
||||
|
fn lagrange_polys<F: PrimeField>(domain_n: GeneralEvaluationDomain<F>) -> Vec<DensePolynomial<F>> {
|
||||
|
let mut lagrange_polynomials: Vec<DensePolynomial<F>> = Vec::new();
|
||||
|
for i in 0..domain_n.size() {
|
||||
|
let evals: Vec<F> = cfg_into_iter!(0..domain_n.size())
|
||||
|
.map(|k| if k == i { F::one() } else { F::zero() })
|
||||
|
.collect();
|
||||
|
lagrange_polynomials.push(Evaluations::from_vec_and_domain(evals, domain_n).interpolate());
|
||||
|
}
|
||||
|
lagrange_polynomials
|
||||
|
}
|
||||
|
|
||||
|
// f(w) in R1CS context. For the moment we use R1CS, in the future we will abstract this with a
|
||||
|
// trait
|
||||
|
fn eval_f<F: PrimeField>(r1cs: &R1CS<F>, w: &[F]) -> Result<Vec<F>, Error> {
|
||||
|
let Az = mat_vec_mul_sparse(&r1cs.A, w)?;
|
||||
|
let Bz = mat_vec_mul_sparse(&r1cs.B, w)?;
|
||||
|
let Cz = mat_vec_mul_sparse(&r1cs.C, w)?;
|
||||
|
let AzBz = hadamard(&Az, &Bz)?;
|
||||
|
vec_sub(&AzBz, &Cz)
|
||||
|
}
|
||||
|
|
||||
|
#[cfg(test)]
|
||||
|
mod tests {
|
||||
|
use super::*;
|
||||
|
use ark_pallas::{Fr, Projective};
|
||||
|
use ark_std::UniformRand;
|
||||
|
|
||||
|
use crate::ccs::r1cs::tests::{get_test_r1cs, get_test_z};
|
||||
|
use crate::pedersen::Pedersen;
|
||||
|
use crate::transcript::poseidon::{tests::poseidon_test_config, PoseidonTranscript};
|
||||
|
|
||||
|
pub(crate) fn check_instance<C: CurveGroup>(
|
||||
|
r1cs: &R1CS<C::ScalarField>,
|
||||
|
instance: &CommittedInstance<C>,
|
||||
|
w: &Witness<C::ScalarField>,
|
||||
|
) -> Result<(), Error> {
|
||||
|
if instance.betas.len() != log2(w.w.len()) as usize {
|
||||
|
return Err(Error::NotSameLength(
|
||||
|
"instance.betas.len()".to_string(),
|
||||
|
instance.betas.len(),
|
||||
|
"log2(w.w.len())".to_string(),
|
||||
|
log2(w.w.len()) as usize,
|
||||
|
));
|
||||
|
}
|
||||
|
|
||||
|
let f_w = eval_f(r1cs, &w.w)?; // f(w)
|
||||
|
|
||||
|
let mut r = C::ScalarField::zero();
|
||||
|
for (i, f_w_i) in f_w.iter().enumerate() {
|
||||
|
r += pow_i(i, &instance.betas) * f_w_i;
|
||||
|
}
|
||||
|
if instance.e == r {
|
||||
|
return Ok(());
|
||||
|
}
|
||||
|
Err(Error::NotSatisfied)
|
||||
|
}
|
||||
|
|
||||
|
#[test]
|
||||
|
fn test_pow_i() {
|
||||
|
let mut rng = ark_std::test_rng();
|
||||
|
let t = 4;
|
||||
|
let n = 16;
|
||||
|
let beta = Fr::rand(&mut rng);
|
||||
|
let betas = exponential_powers(beta, t);
|
||||
|
let not_betas = all_powers(beta, n);
|
||||
|
|
||||
|
#[allow(clippy::needless_range_loop)]
|
||||
|
for i in 0..n {
|
||||
|
assert_eq!(pow_i(i, &betas), not_betas[i]);
|
||||
|
}
|
||||
|
}
|
||||
|
|
||||
|
#[test]
|
||||
|
fn test_pow_i_over_x() {
|
||||
|
let mut rng = ark_std::test_rng();
|
||||
|
let t = 3;
|
||||
|
let n = 8;
|
||||
|
let beta = Fr::rand(&mut rng);
|
||||
|
let delta = Fr::rand(&mut rng);
|
||||
|
let betas = exponential_powers(beta, t);
|
||||
|
let deltas = exponential_powers(delta, t);
|
||||
|
|
||||
|
// compute b + X*d, with X=rand
|
||||
|
let x = Fr::rand(&mut rng);
|
||||
|
let bxd = vec_add(&betas, &vec_scalar_mul(&deltas, &x)).unwrap();
|
||||
|
|
||||
|
// assert that computing pow_over_x of betas,deltas, is equivalent to first computing the
|
||||
|
// vector [betas+X*deltas] and then computing pow_i over it
|
||||
|
for i in 0..n {
|
||||
|
let pow_i1 = pow_i_over_x(i, &betas, &deltas).unwrap();
|
||||
|
let pow_i2 = pow_i(i, &bxd);
|
||||
|
assert_eq!(pow_i1.evaluate(&x), pow_i2);
|
||||
|
}
|
||||
|
}
|
||||
|
|
||||
|
#[test]
|
||||
|
fn test_eval_f() {
|
||||
|
let r1cs = get_test_r1cs::<Fr>();
|
||||
|
let mut z = get_test_z::<Fr>(3);
|
||||
|
|
||||
|
let f_w = eval_f(&r1cs, &z).unwrap();
|
||||
|
assert!(is_zero_vec(&f_w));
|
||||
|
|
||||
|
z[1] = Fr::from(111);
|
||||
|
let f_w = eval_f(&r1cs, &z).unwrap();
|
||||
|
assert!(!is_zero_vec(&f_w));
|
||||
|
}
|
||||
|
|
||||
|
// k represents the number of instances to be fold, appart from the running instance
|
||||
|
#[allow(clippy::type_complexity)]
|
||||
|
fn prepare_inputs(
|
||||
|
k: usize,
|
||||
|
) -> (
|
||||
|
Witness<Fr>,
|
||||
|
CommittedInstance<Projective>,
|
||||
|
Vec<Witness<Fr>>,
|
||||
|
Vec<CommittedInstance<Projective>>,
|
||||
|
) {
|
||||
|
let mut rng = ark_std::test_rng();
|
||||
|
let pedersen_params = Pedersen::<Projective>::new_params(&mut rng, 100); // 100 is wip, will get it from actual vec
|
||||
|
|
||||
|
let z = get_test_z::<Fr>(3);
|
||||
|
let mut zs: Vec<Vec<Fr>> = Vec::new();
|
||||
|
for i in 0..k {
|
||||
|
let z_i = get_test_z::<Fr>(i + 4);
|
||||
|
zs.push(z_i);
|
||||
|
}
|
||||
|
|
||||
|
let n = z.len();
|
||||
|
let t = log2(n) as usize;
|
||||
|
|
||||
|
let beta = Fr::rand(&mut rng);
|
||||
|
let betas = exponential_powers(beta, t);
|
||||
|
|
||||
|
let witness = Witness::<Fr> {
|
||||
|
w: z.clone(),
|
||||
|
r_w: Fr::rand(&mut rng),
|
||||
|
};
|
||||
|
let phi =
|
||||
|
Pedersen::<Projective>::commit(&pedersen_params, &witness.w, &witness.r_w).unwrap();
|
||||
|
let instance = CommittedInstance::<Projective> {
|
||||
|
phi,
|
||||
|
betas: betas.clone(),
|
||||
|
e: Fr::zero(),
|
||||
|
};
|
||||
|
// same for the other instances
|
||||
|
let mut witnesses: Vec<Witness<Fr>> = Vec::new();
|
||||
|
let mut instances: Vec<CommittedInstance<Projective>> = Vec::new();
|
||||
|
#[allow(clippy::needless_range_loop)]
|
||||
|
for i in 0..k {
|
||||
|
let witness_i = Witness::<Fr> {
|
||||
|
w: zs[i].clone(),
|
||||
|
r_w: Fr::rand(&mut rng),
|
||||
|
};
|
||||
|
let phi_i =
|
||||
|
Pedersen::<Projective>::commit(&pedersen_params, &witness_i.w, &witness_i.r_w)
|
||||
|
.unwrap();
|
||||
|
let instance_i = CommittedInstance::<Projective> {
|
||||
|
phi: phi_i,
|
||||
|
betas: betas.clone(),
|
||||
|
e: Fr::zero(),
|
||||
|
};
|
||||
|
witnesses.push(witness_i);
|
||||
|
instances.push(instance_i);
|
||||
|
}
|
||||
|
|
||||
|
(witness, instance, witnesses, instances)
|
||||
|
}
|
||||
|
|
||||
|
#[test]
|
||||
|
fn test_fold_native_case() {
|
||||
|
let k = 7;
|
||||
|
let (witness, instance, witnesses, instances) = prepare_inputs(k);
|
||||
|
let r1cs = get_test_r1cs::<Fr>();
|
||||
|
|
||||
|
// init Prover & Verifier's transcript
|
||||
|
let poseidon_config = poseidon_test_config::<Fr>();
|
||||
|
let mut transcript_p = PoseidonTranscript::<Projective>::new(&poseidon_config);
|
||||
|
let mut transcript_v = PoseidonTranscript::<Projective>::new(&poseidon_config);
|
||||
|
|
||||
|
let (folded_instance, folded_witness, F_coeffs, K_coeffs) = Folding::<Projective>::prove(
|
||||
|
&mut transcript_p,
|
||||
|
&r1cs,
|
||||
|
&instance,
|
||||
|
&witness,
|
||||
|
&instances,
|
||||
|
&witnesses,
|
||||
|
)
|
||||
|
.unwrap();
|
||||
|
|
||||
|
// veriier
|
||||
|
let folded_instance_v = Folding::<Projective>::verify(
|
||||
|
&mut transcript_v,
|
||||
|
&r1cs,
|
||||
|
&instance,
|
||||
|
&instances,
|
||||
|
F_coeffs,
|
||||
|
K_coeffs,
|
||||
|
)
|
||||
|
.unwrap();
|
||||
|
|
||||
|
// check that prover & verifier folded instances are the same values
|
||||
|
assert_eq!(folded_instance.phi, folded_instance_v.phi);
|
||||
|
assert_eq!(folded_instance.betas, folded_instance_v.betas);
|
||||
|
assert_eq!(folded_instance.e, folded_instance_v.e);
|
||||
|
assert!(!folded_instance.e.is_zero());
|
||||
|
|
||||
|
// check that the folded instance satisfies the relation
|
||||
|
check_instance(&r1cs, &folded_instance, &folded_witness).unwrap();
|
||||
|
}
|
||||
|
|
||||
|
#[test]
|
||||
|
fn test_fold_various_iterations() {
|
||||
|
let r1cs = get_test_r1cs::<Fr>();
|
||||
|
|
||||
|
// init Prover & Verifier's transcript
|
||||
|
let poseidon_config = poseidon_test_config::<Fr>();
|
||||
|
let mut transcript_p = PoseidonTranscript::<Projective>::new(&poseidon_config);
|
||||
|
let mut transcript_v = PoseidonTranscript::<Projective>::new(&poseidon_config);
|
||||
|
|
||||
|
let (mut running_witness, mut running_instance, _, _) = prepare_inputs(0);
|
||||
|
|
||||
|
// fold k instances on each of num_iters iterations
|
||||
|
let k = 7;
|
||||
|
let num_iters = 10;
|
||||
|
for _ in 0..num_iters {
|
||||
|
// generate the instances to be fold
|
||||
|
let (_, _, witnesses, instances) = prepare_inputs(k);
|
||||
|
|
||||
|
let (folded_instance, folded_witness, F_coeffs, K_coeffs) =
|
||||
|
Folding::<Projective>::prove(
|
||||
|
&mut transcript_p,
|
||||
|
&r1cs,
|
||||
|
&running_instance,
|
||||
|
&running_witness,
|
||||
|
&instances,
|
||||
|
&witnesses,
|
||||
|
)
|
||||
|
.unwrap();
|
||||
|
|
||||
|
// veriier
|
||||
|
let folded_instance_v = Folding::<Projective>::verify(
|
||||
|
&mut transcript_v,
|
||||
|
&r1cs,
|
||||
|
&running_instance,
|
||||
|
&instances,
|
||||
|
F_coeffs,
|
||||
|
K_coeffs,
|
||||
|
)
|
||||
|
.unwrap();
|
||||
|
|
||||
|
// check that prover & verifier folded instances are the same values
|
||||
|
assert_eq!(folded_instance.phi, folded_instance_v.phi);
|
||||
|
assert_eq!(folded_instance.betas, folded_instance_v.betas);
|
||||
|
assert_eq!(folded_instance.e, folded_instance_v.e);
|
||||
|
assert!(!folded_instance.e.is_zero());
|
||||
|
|
||||
|
// check that the folded instance satisfies the relation
|
||||
|
check_instance(&r1cs, &folded_instance, &folded_witness).unwrap();
|
||||
|
|
||||
|
running_witness = folded_witness;
|
||||
|
running_instance = folded_instance;
|
||||
|
}
|
||||
|
}
|
||||
|
}
|
@ -0,0 +1,31 @@ |
|||||
|
/// Implements the scheme described in [ProtoGalaxy](https://eprint.iacr.org/2023/1106.pdf)
|
||||
|
use ark_ec::CurveGroup;
|
||||
|
use ark_ff::PrimeField;
|
||||
|
use thiserror::Error;
|
||||
|
|
||||
|
pub mod folding;
|
||||
|
pub mod traits;
|
||||
|
pub(crate) mod utils;
|
||||
|
|
||||
|
#[derive(Clone, Debug)]
|
||||
|
pub struct CommittedInstance<C: CurveGroup> {
|
||||
|
phi: C,
|
||||
|
betas: Vec<C::ScalarField>,
|
||||
|
e: C::ScalarField,
|
||||
|
}
|
||||
|
|
||||
|
#[derive(Clone, Debug)]
|
||||
|
pub struct Witness<F: PrimeField> {
|
||||
|
w: Vec<F>,
|
||||
|
r_w: F,
|
||||
|
}
|
||||
|
|
||||
|
#[derive(Debug, Error, PartialEq)]
|
||||
|
pub enum ProtoGalaxyError {
|
||||
|
#[error("The remainder from G(X)-F(α)*L_0(X)) / Z(X) should be zero")]
|
||||
|
RemainderNotZero,
|
||||
|
#[error("Could not divide by vanishing polynomial")]
|
||||
|
CouldNotDivideByVanishing,
|
||||
|
#[error("The number of incoming instances + 1 should be a power of two, current number of instances: {0}")]
|
||||
|
WrongNumInstances(usize),
|
||||
|
}
|
@ -0,0 +1,23 @@ |
|||||
|
use ark_crypto_primitives::sponge::Absorb;
|
||||
|
use ark_ec::{CurveGroup, Group};
|
||||
|
|
||||
|
use super::CommittedInstance;
|
||||
|
use crate::transcript::{poseidon::PoseidonTranscript, Transcript};
|
||||
|
use crate::Error;
|
||||
|
|
||||
|
/// ProtoGalaxyTranscript extends [`Transcript`] with the method to absorb ProtoGalaxy's
|
||||
|
/// CommittedInstance.
|
||||
|
pub trait ProtoGalaxyTranscript<C: CurveGroup>: Transcript<C> {
|
||||
|
fn absorb_committed_instance(&mut self, ci: &CommittedInstance<C>) -> Result<(), Error> {
|
||||
|
self.absorb_point(&ci.phi)?;
|
||||
|
self.absorb_vec(&ci.betas);
|
||||
|
self.absorb(&ci.e);
|
||||
|
Ok(())
|
||||
|
}
|
||||
|
}
|
||||
|
|
||||
|
// Implements ProtoGalaxyTranscript for PoseidonTranscript
|
||||
|
impl<C: CurveGroup> ProtoGalaxyTranscript<C> for PoseidonTranscript<C> where
|
||||
|
<C as Group>::ScalarField: Absorb
|
||||
|
{
|
||||
|
}
|
@ -0,0 +1,32 @@ |
|||||
|
use ark_ff::PrimeField;
|
||||
|
|
||||
|
// returns (b, b^2, b^4, ..., b^{2^{t-1}})
|
||||
|
pub fn exponential_powers<F: PrimeField>(b: F, t: usize) -> Vec<F> {
|
||||
|
let mut r = vec![F::zero(); t];
|
||||
|
r[0] = b;
|
||||
|
for i in 1..t {
|
||||
|
r[i] = r[i - 1].square();
|
||||
|
}
|
||||
|
r
|
||||
|
}
|
||||
|
pub fn all_powers<F: PrimeField>(a: F, n: usize) -> Vec<F> {
|
||||
|
let mut r = vec![F::zero(); n];
|
||||
|
for (i, r_i) in r.iter_mut().enumerate() {
|
||||
|
*r_i = a.pow([i as u64]);
|
||||
|
}
|
||||
|
r
|
||||
|
}
|
||||
|
|
||||
|
// returns a vector containing βᵢ* = βᵢ + α ⋅ δᵢ
|
||||
|
pub fn betas_star<F: PrimeField>(betas: &[F], deltas: &[F], alpha: F) -> Vec<F> {
|
||||
|
betas
|
||||
|
.iter()
|
||||
|
.zip(
|
||||
|
deltas
|
||||
|
.iter()
|
||||
|
.map(|delta_i| alpha * delta_i)
|
||||
|
.collect::<Vec<F>>(),
|
||||
|
)
|
||||
|
.map(|(beta_i, delta_i_alpha)| *beta_i + delta_i_alpha)
|
||||
|
.collect()
|
||||
|
}
|
@ -0,0 +1,9 @@ |
|||||
|
pub fn bit_decompose(input: u64, n: usize) -> Vec<bool> {
|
||||
|
let mut res = Vec::with_capacity(n);
|
||||
|
let mut i = input;
|
||||
|
for _ in 0..n {
|
||||
|
res.push(i & 1 == 1);
|
||||
|
i >>= 1;
|
||||
|
}
|
||||
|
res
|
||||
|
}
|