You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

189 lines
6.5 KiB

#![allow(non_snake_case)]
pub mod merkletree;
use merkletree::{MerkleTreePoseidon as MT, Params as MTParams};
use ark_ff::PrimeField;
use ark_poly::{univariate::DensePolynomial, UVPolynomial};
use ark_std::log2;
use ark_std::marker::PhantomData;
use ark_std::ops::Mul;
use ark_std::{rand::Rng, UniformRand};
pub struct FRI<F: PrimeField, P: UVPolynomial<F>> {
_f: PhantomData<F>,
_poly: PhantomData<P>,
}
impl<F: PrimeField, P: UVPolynomial<F>> FRI<F, P> {
pub fn new() -> Self {
Self {
_f: PhantomData,
_poly: PhantomData,
}
}
pub fn split(p: &P) -> (P, P) {
// let d = p.degree() + 1;
let d = p.coeffs().len();
if (d != 0) && (d & (d - 1) != 0) {
println!("d={:?}", d);
panic!("d should be a power of 2");
}
let coeffs = p.coeffs();
let odd: Vec<F> = coeffs.iter().step_by(2).cloned().collect();
let even: Vec<F> = coeffs.iter().skip(1).step_by(2).cloned().collect();
return (
P::from_coefficients_vec(odd),
P::from_coefficients_vec(even),
);
}
pub fn prove<R: Rng>(rng: &mut R, p: &P) -> (Vec<F>, Vec<F>, [F; 2]) {
// f_0(x) = fL_0(x^2) + x fR_0(x^2)
let mut f_i1 = p.clone();
// TODO challenge a_0
let mut f_is: Vec<P> = Vec::new();
f_is.push(p.clone());
let mut commitments: Vec<F> = Vec::new();
let mut mts: Vec<MT<F>> = Vec::new();
while f_i1.degree() > 1 {
let alpha_i = F::from(3_u64); // TODO: WIP, defined by Verifier (well, hash transcript)
let (fL_i, fR_i) = Self::split(&f_i1);
// compute f_{i+1}(x) = fL_i(x) + alpha_i * fR_i(x)
let aux = DensePolynomial::from_coefficients_slice(fR_i.coeffs());
f_i1 = fL_i.clone() + P::from_coefficients_slice(aux.mul(alpha_i).coeffs());
f_is.push(f_i1.clone());
// commit to f_{i+1}(x) = fL_i(x) + alpha_i * fR_i(x)
let (cm_i, mt_i) = MT::commit(f_i1.coeffs());
commitments.push(cm_i);
mts.push(mt_i);
}
let (fL_i, fR_i) = Self::split(&f_i1);
let constant_fL_l: F = fL_i.coeffs()[0].clone();
let constant_fR_l: F = fR_i.coeffs()[0].clone();
// TODO this will be a hash from the transcript
// V sets rand z \in \mathbb{F} challenge
let z = F::from(10_u64);
let mut evals: Vec<F> = Vec::new();
// TODO this will be done inside the prev loop, now it is here just for clarity
// evaluate f_i(z^{2^i})
for i in 0..f_is.len() {
// TODO check usage of .pow(u64)
let z_2i = z.pow([2_u64.pow(i as u32)]); // z^{2^i}
let neg_z_2i = z_2i.neg();
let eval_i = f_is[i].evaluate(&z_2i);
evals.push(eval_i);
let eval_i = f_is[i].evaluate(&neg_z_2i);
evals.push(eval_i);
}
// TODO return also the commitment_proofs
// return: Comm(f_i(x)), f_i(+-z^{2^i}), constant values {f_l^L, f_l^R}
(commitments, evals, [constant_fL_l, constant_fR_l])
}
pub fn verify(commitments: Vec<F>, evals: Vec<F>, constants: [F; 2]) -> bool {
let z = F::from(10_u64); // TODO this will be a hash from the transcript
// TODO check commitments.len()==evals.len()/2
for i in (0..evals.len()).step_by(2) {
let alpha_i = F::from(3_u64); // TODO: WIP, defined by Verifier (well, hash transcript)
let z_2i = z.pow([2_u64.pow((i as u32) / 2)]); // z^{2^i}
// take f_i(z^2) from evals
let fi_z = evals[i];
let neg_fi_z = evals[i + 1];
// compute f_i^L(z^2), f_i^R(z^2) from the linear combination
let L = (fi_z + neg_fi_z) * F::from(2_u32).inverse().unwrap();
let R = (fi_z - neg_fi_z) * (F::from(2_u32) * z_2i).inverse().unwrap();
// compute f_{i+1}(z^2) = f_i^L(z^2) + a_i f_i^R(z^2)
let next_fi_z2 = L + alpha_i * R;
// check: obtained f_{i+1}(z^2) == evals.f_{i+1}(z^2) (=evals[i+2])
if i < evals.len() - 2 {
if next_fi_z2 != evals[i + 2] {
println!("\nerr, i={:?}", i);
println!(" next_fi^z2 {:?}", next_fi_z2.to_string());
println!(" e[i] {:?}", evals[i + 2].to_string());
panic!("should f_i+1(z^2) == evals.f_i+1(z^2) (=evals[i+2])");
}
}
// check commitment opening
// TODO
// last iteration, check constant values equal to the obtained f_i^L(z^{2^i}),
// f_i^R(z^{2^i})
if i == evals.len() - 2 {
if L != constants[0] {
panic!("constant L not equal");
}
if R != constants[1] {
println!("R {:?}\n {:?}", R.to_string(), constants[1].to_string());
panic!("constant R not equal");
}
}
}
true
}
}
#[cfg(test)]
mod tests {
use super::*;
use ark_ff::Field;
use ark_std::UniformRand;
pub type Fr = ark_bn254::Fr; // scalar field
use ark_poly::univariate::DensePolynomial;
use ark_poly::Polynomial;
#[test]
fn test_split() {
let mut rng = ark_std::test_rng();
let deg = 7;
let p = DensePolynomial::<Fr>::rand(deg, &mut rng);
assert_eq!(p.degree(), deg);
type FRIC = FRI<Fr, DensePolynomial<Fr>>;
let (pL, pR) = FRIC::split(&p);
// check that f(z) == fL(x^2) + x * fR(x^2), for a rand z
let z = Fr::rand(&mut rng);
assert_eq!(
p.evaluate(&z),
pL.evaluate(&z.square()) + z * pR.evaluate(&z.square())
);
}
#[test]
fn test_prove() {
let mut rng = ark_std::test_rng();
let deg = 15;
let p = DensePolynomial::<Fr>::rand(deg, &mut rng);
assert_eq!(p.degree(), deg);
// println!("p {:?}", p);
type FRIC = FRI<Fr, DensePolynomial<Fr>>;
// prover
let (commitments, evals, constvals) = FRIC::prove(&mut rng, &p);
// commitments contains the commitments to each f_0, f_1, ..., f_n, with n=log2(d)
assert_eq!(commitments.len(), log2(p.coeffs().len()) as usize - 1);
assert_eq!(evals.len(), 2 * log2(p.coeffs().len()) as usize);
let v = FRIC::verify(commitments, evals, constvals);
assert!(v);
}
}