mirror of
https://github.com/arnaucube/galdric.git
synced 2026-02-07 03:06:45 +01:00
almost implemented k
This commit is contained in:
24
README.md
24
README.md
@@ -8,3 +8,27 @@ machine learning server, for image classification
|
||||
- For the input images, calculates the euclidean distances
|
||||
- Gets the nearest neighbour
|
||||
- Show the result, that is the label of the object in the image
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
-------------
|
||||
|
||||
send file over ssh:
|
||||
```
|
||||
scp dataset.tar.gz root@51.255.193.106:/root/galdric
|
||||
```
|
||||
|
||||
on the server, untar file:
|
||||
```
|
||||
tar -xvzf dataset.tar.gz
|
||||
```
|
||||
57
knn.go
57
knn.go
@@ -1,5 +1,10 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"sort"
|
||||
)
|
||||
|
||||
func euclideanDist(img1, img2 [][]float64) float64 {
|
||||
var dist float64
|
||||
for i := 0; i < len(img1); i++ {
|
||||
@@ -11,17 +16,55 @@ func euclideanDist(img1, img2 [][]float64) float64 {
|
||||
return dist
|
||||
}
|
||||
|
||||
type Neighbour struct {
|
||||
Dist float64
|
||||
Label string
|
||||
}
|
||||
|
||||
func isNeighbour(neighbours []Neighbour, dist float64, label string) []Neighbour {
|
||||
var temp []Neighbour
|
||||
|
||||
for i := 0; i < len(neighbours); i++ {
|
||||
temp = append(temp, neighbours[i])
|
||||
}
|
||||
ntemp := Neighbour{dist, label}
|
||||
temp = append(temp, ntemp)
|
||||
|
||||
//now, sort the temp array
|
||||
sort.Slice(temp, func(i, j int) bool {
|
||||
return temp[i].Dist < temp[j].Dist
|
||||
})
|
||||
|
||||
for i := 0; i < len(neighbours); i++ {
|
||||
neighbours[i] = temp[i]
|
||||
}
|
||||
|
||||
return neighbours
|
||||
}
|
||||
|
||||
func knn(dataset Dataset, input [][]float64) string {
|
||||
d := euclideanDist(dataset["leopard"][0], input)
|
||||
label := "lamp"
|
||||
for k, v := range dataset {
|
||||
k := 3
|
||||
var neighbours []Neighbour
|
||||
//d := euclideanDist(dataset["leopard"][0], input)
|
||||
for i := 0; i < k; i++ {
|
||||
/*neighbours[i].Dist = euclideanDist(dataset["leopard"][0], input)
|
||||
neighbours[i].Label = "leopard"*/
|
||||
neighbours = append(neighbours, Neighbour{euclideanDist(dataset["leopard"][0], input), "leopard"})
|
||||
}
|
||||
for l, v := range dataset {
|
||||
for i := 0; i < len(v); i++ {
|
||||
dNew := euclideanDist(v[i], input)
|
||||
if dNew < d {
|
||||
/*if dNew < d {
|
||||
d = dNew
|
||||
label = k
|
||||
}
|
||||
label = l
|
||||
}*/
|
||||
neighbours = isNeighbour(neighbours, dNew, l)
|
||||
}
|
||||
}
|
||||
return label
|
||||
for i := 0; i < len(neighbours); i++ {
|
||||
fmt.Print(neighbours[i].Label + " - ")
|
||||
fmt.Println(neighbours[i].Dist)
|
||||
}
|
||||
|
||||
return neighbours[0].Label
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user