package main import ( "fmt" "sort" ) type Neighbour struct { Dist float64 Label string } func euclideanDist(img1, img2 [][]float64) float64 { var dist float64 for i := 0; i < len(img1); i++ { for j := 0; j < len(img1[i]); j++ { dist += (img1[i][j] - img2[i][j]) * (img1[i][j] - img2[i][j]) } } return dist } func isNeighbour(neighbours []Neighbour, dist float64, label string) []Neighbour { var temp []Neighbour for i := 0; i < len(neighbours); i++ { temp = append(temp, neighbours[i]) } ntemp := Neighbour{dist, label} temp = append(temp, ntemp) //now, sort the temp array sort.Slice(temp, func(i, j int) bool { return temp[i].Dist < temp[j].Dist }) for i := 0; i < len(neighbours); i++ { neighbours[i] = temp[i] } return neighbours } func getMapKey(dataset map[string]ImgDataset) string { for k, _ := range dataset { return k } return "" } type LabelCount struct { Label string Count int } func averageLabel(neighbours []Neighbour) string { labels := make(map[string]int) for _, n := range neighbours { labels[n.Label]++ } //create array from map var a []LabelCount for k, v := range labels { a = append(a, LabelCount{k, v}) } sort.Slice(a, func(i, j int) bool { return a[i].Count > a[j].Count }) fmt.Println(a) //send the most appeared neighbour in k return a[0].Label } func distNeighboursFromDataset(dataset Dataset, neighbours []Neighbour, input [][]float64) []Neighbour { //check the complete dataset, checking if each entry is a k nearest neighbour for l, v := range dataset { for i := 0; i < len(v); i++ { dNew := euclideanDist(v[i], input) neighbours = isNeighbour(neighbours, dNew, l) } } return neighbours } func knn(dataset Dataset, input [][]float64) string { k := 6 var neighbours []Neighbour var neighboursED []Neighbour //get a key from map dataset, the key is a label label := getMapKey(dataset) //fill the first k neighbours for i := 0; i < k; i++ { neighbours = append(neighbours, Neighbour{euclideanDist(dataset[label][0], input), label}) neighboursED = append(neighbours, Neighbour{euclideanDist(dataset[label][0], input), label}) } neighbours = distNeighboursFromDataset(dataset, neighbours, input) neighboursED = distNeighboursFromDataset(datasetED, neighbours, input) neighbours = append(neighbours, neighboursED...) for i := 0; i < len(neighbours); i++ { fmt.Print(neighbours[i].Label + " - ") fmt.Println(neighbours[i].Dist) } //from the k nearest neighbours, get the more frequent neighbour r := averageLabel(neighbours) return r }