mirror of
https://github.com/arnaucube/gnark-plonky2-verifier.git
synced 2026-01-12 00:51:33 +01:00
Rename back
This commit is contained in:
@@ -50,28 +50,28 @@ func init() {
|
||||
}
|
||||
|
||||
// A type alias used to represent Goldilocks field elements.
|
||||
type GoldilocksVariable struct {
|
||||
type Variable struct {
|
||||
Limb frontend.Variable
|
||||
}
|
||||
|
||||
// Creates a new Goldilocks field element from an existing variable. Assumes that the element is
|
||||
// already reduced.
|
||||
func NewVariable(x frontend.Variable) GoldilocksVariable {
|
||||
return GoldilocksVariable{Limb: x}
|
||||
func NewVariable(x frontend.Variable) Variable {
|
||||
return Variable{Limb: x}
|
||||
}
|
||||
|
||||
// The zero element in the Golidlocks field.
|
||||
func Zero() GoldilocksVariable {
|
||||
func Zero() Variable {
|
||||
return NewVariable(0)
|
||||
}
|
||||
|
||||
// The one element in the Goldilocks field.
|
||||
func One() GoldilocksVariable {
|
||||
func One() Variable {
|
||||
return NewVariable(1)
|
||||
}
|
||||
|
||||
// The negative one element in the Goldilocks field.
|
||||
func NegOne() GoldilocksVariable {
|
||||
func NegOne() Variable {
|
||||
return NewVariable(MODULUS.Uint64() - 1)
|
||||
}
|
||||
|
||||
@@ -88,38 +88,38 @@ func NewGoldilocksApi(api frontend.API) *GoldilocksApi {
|
||||
}
|
||||
|
||||
// Adds two field elements such that x + y = z within the Golidlocks field.
|
||||
func (p *GoldilocksApi) Add(a GoldilocksVariable, b GoldilocksVariable) GoldilocksVariable {
|
||||
func (p *GoldilocksApi) Add(a Variable, b Variable) Variable {
|
||||
return p.MulAdd(a, NewVariable(1), b)
|
||||
}
|
||||
|
||||
// Adds two field elements such that x + y = z within the Golidlocks field without reducing.
|
||||
func (p *GoldilocksApi) AddNoReduce(a GoldilocksVariable, b GoldilocksVariable) GoldilocksVariable {
|
||||
func (p *GoldilocksApi) AddNoReduce(a Variable, b Variable) Variable {
|
||||
return NewVariable(p.api.Add(a.Limb, b.Limb))
|
||||
}
|
||||
|
||||
// Subtracts two field elements such that x + y = z within the Golidlocks field.
|
||||
func (p *GoldilocksApi) Sub(a GoldilocksVariable, b GoldilocksVariable) GoldilocksVariable {
|
||||
func (p *GoldilocksApi) Sub(a Variable, b Variable) Variable {
|
||||
return p.MulAdd(b, NewVariable(MODULUS.Uint64()-1), a)
|
||||
}
|
||||
|
||||
// Subtracts two field elements such that x + y = z within the Golidlocks field without reducing.
|
||||
func (p *GoldilocksApi) SubNoReduce(a GoldilocksVariable, b GoldilocksVariable) GoldilocksVariable {
|
||||
func (p *GoldilocksApi) SubNoReduce(a Variable, b Variable) Variable {
|
||||
return NewVariable(p.api.Add(a.Limb, p.api.Mul(b.Limb, MODULUS.Uint64()-1)))
|
||||
}
|
||||
|
||||
// Multiplies two field elements such that x * y = z within the Golidlocks field.
|
||||
func (p *GoldilocksApi) Mul(a GoldilocksVariable, b GoldilocksVariable) GoldilocksVariable {
|
||||
func (p *GoldilocksApi) Mul(a Variable, b Variable) Variable {
|
||||
return p.MulAdd(a, b, Zero())
|
||||
}
|
||||
|
||||
// Multiplies two field elements such that x * y = z within the Golidlocks field without reducing.
|
||||
func (p *GoldilocksApi) MulNoReduce(a GoldilocksVariable, b GoldilocksVariable) GoldilocksVariable {
|
||||
func (p *GoldilocksApi) MulNoReduce(a Variable, b Variable) Variable {
|
||||
return NewVariable(p.api.Mul(a.Limb, b.Limb))
|
||||
}
|
||||
|
||||
// Multiplies two field elements and adds a field element such that x * y + z = c within the
|
||||
// Golidlocks field.
|
||||
func (p *GoldilocksApi) MulAdd(a GoldilocksVariable, b GoldilocksVariable, c GoldilocksVariable) GoldilocksVariable {
|
||||
func (p *GoldilocksApi) MulAdd(a Variable, b Variable, c Variable) Variable {
|
||||
result, err := p.api.Compiler().NewHint(MulAddHint, 2, a.Limb, b.Limb, c.Limb)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
@@ -140,7 +140,7 @@ func (p *GoldilocksApi) MulAdd(a GoldilocksVariable, b GoldilocksVariable, c Gol
|
||||
|
||||
// Multiplies two field elements and adds a field element such that x * y + z = c within the
|
||||
// Golidlocks field without reducing.
|
||||
func (p *GoldilocksApi) MulAddNoReduce(a GoldilocksVariable, b GoldilocksVariable, c GoldilocksVariable) GoldilocksVariable {
|
||||
func (p *GoldilocksApi) MulAddNoReduce(a Variable, b Variable, c Variable) Variable {
|
||||
return p.AddNoReduce(p.MulNoReduce(a, b), c)
|
||||
}
|
||||
|
||||
@@ -168,7 +168,7 @@ func MulAddHint(_ *big.Int, inputs []*big.Int, results []*big.Int) error {
|
||||
}
|
||||
|
||||
// Reduces a field element x such that x % MODULUS = y.
|
||||
func (p *GoldilocksApi) Reduce(x GoldilocksVariable) GoldilocksVariable {
|
||||
func (p *GoldilocksApi) Reduce(x Variable) Variable {
|
||||
// Witness a `quotient` and `remainder` such that:
|
||||
//
|
||||
// MODULUS * quotient + remainder = x
|
||||
@@ -192,7 +192,7 @@ func (p *GoldilocksApi) Reduce(x GoldilocksVariable) GoldilocksVariable {
|
||||
}
|
||||
|
||||
// Reduces a field element x such that x % MODULUS = y.
|
||||
func (p *GoldilocksApi) ReduceWithMaxBits(x GoldilocksVariable, maxNbBits uint64) GoldilocksVariable {
|
||||
func (p *GoldilocksApi) ReduceWithMaxBits(x Variable, maxNbBits uint64) Variable {
|
||||
// Witness a `quotient` and `remainder` such that:
|
||||
//
|
||||
// MODULUS * quotient + remainder = x
|
||||
@@ -227,7 +227,7 @@ func ReduceHint(_ *big.Int, inputs []*big.Int, results []*big.Int) error {
|
||||
}
|
||||
|
||||
// Computes the inverse of a field element x such that x * x^-1 = 1.
|
||||
func (p *GoldilocksApi) Inverse(x GoldilocksVariable) GoldilocksVariable {
|
||||
func (p *GoldilocksApi) Inverse(x Variable) Variable {
|
||||
result, err := p.api.Compiler().NewHint(InverseHint, 1, x.Limb)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
@@ -261,7 +261,7 @@ func InverseHint(_ *big.Int, inputs []*big.Int, results []*big.Int) error {
|
||||
}
|
||||
|
||||
// Computes a field element raised to some power.
|
||||
func (p *GoldilocksApi) Exp(x GoldilocksVariable, k *big.Int) GoldilocksVariable {
|
||||
func (p *GoldilocksApi) Exp(x Variable, k *big.Int) Variable {
|
||||
if k.IsUint64() && k.Uint64() == 0 {
|
||||
return One()
|
||||
}
|
||||
@@ -306,7 +306,7 @@ func SplitLimbsHint(_ *big.Int, inputs []*big.Int, results []*big.Int) error {
|
||||
}
|
||||
|
||||
// Range checks a field element x to be less than the Golidlocks modulus 2 ^ 64 - 2 ^ 32 + 1.
|
||||
func (p *GoldilocksApi) RangeCheck(x GoldilocksVariable) {
|
||||
func (p *GoldilocksApi) RangeCheck(x Variable) {
|
||||
// The Goldilocks' modulus is 2^64 - 2^32 + 1, which is:
|
||||
//
|
||||
// 1111111111111111111111111111111100000000000000000000000000000001
|
||||
@@ -350,7 +350,7 @@ func (p *GoldilocksApi) RangeCheck(x GoldilocksVariable) {
|
||||
)
|
||||
}
|
||||
|
||||
func (p *GoldilocksApi) AssertIsEqual(x, y GoldilocksVariable) {
|
||||
func (p *GoldilocksApi) AssertIsEqual(x, y Variable) {
|
||||
p.api.AssertIsEqual(x.Limb, y.Limb)
|
||||
}
|
||||
|
||||
|
||||
@@ -9,13 +9,13 @@ import (
|
||||
const W uint64 = 7
|
||||
const DTH_ROOT uint64 = 18446744069414584320
|
||||
|
||||
type QuadraticExtensionVariable [2]GoldilocksVariable
|
||||
type QuadraticExtensionVariable [2]Variable
|
||||
|
||||
func NewQuadraticExtensionVariable(x GoldilocksVariable, y GoldilocksVariable) QuadraticExtensionVariable {
|
||||
func NewQuadraticExtensionVariable(x Variable, y Variable) QuadraticExtensionVariable {
|
||||
return QuadraticExtensionVariable{x, y}
|
||||
}
|
||||
|
||||
func (p GoldilocksVariable) ToQuadraticExtension() QuadraticExtensionVariable {
|
||||
func (p Variable) ToQuadraticExtension() QuadraticExtensionVariable {
|
||||
return NewQuadraticExtensionVariable(p, Zero())
|
||||
}
|
||||
|
||||
@@ -101,7 +101,7 @@ func (p *GoldilocksApi) SubMulExtension(a, b, c QuadraticExtensionVariable) Quad
|
||||
// Multiplies quadratic extension variable in the Goldilocks field by a scalar.
|
||||
func (p *GoldilocksApi) ScalarMulExtension(
|
||||
a QuadraticExtensionVariable,
|
||||
b GoldilocksVariable,
|
||||
b Variable,
|
||||
) QuadraticExtensionVariable {
|
||||
return NewQuadraticExtensionVariable(
|
||||
p.Mul(a[0], b),
|
||||
@@ -111,7 +111,7 @@ func (p *GoldilocksApi) ScalarMulExtension(
|
||||
|
||||
// Computes an inner product over quadratic extension variable vectors in the Goldilocks field.
|
||||
func (p *GoldilocksApi) InnerProductExtension(
|
||||
constant GoldilocksVariable,
|
||||
constant Variable,
|
||||
startingAcc QuadraticExtensionVariable,
|
||||
pairs [][2]QuadraticExtensionVariable,
|
||||
) QuadraticExtensionVariable {
|
||||
|
||||
@@ -24,8 +24,8 @@ func StrArrayToFrontendVariableArray(input []string) []frontend.Variable {
|
||||
return output
|
||||
}
|
||||
|
||||
func Uint64ArrayToVariableArray(input []uint64) []GoldilocksVariable {
|
||||
var output []GoldilocksVariable
|
||||
func Uint64ArrayToVariableArray(input []uint64) []Variable {
|
||||
var output []Variable
|
||||
for i := 0; i < len(input); i++ {
|
||||
output = append(output, NewVariable(input[i]))
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user