Browse Source

Merge pull request #4 from succinctlabs/scalar-mult

Add scalar multiplication
main
puma314 3 years ago
committed by GitHub
parent
commit
645334c83d
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 121 additions and 51 deletions
  1. +6
    -2
      edwards_curve/edparams.go
  2. +67
    -48
      edwards_curve/edpoint.go
  3. +48
    -1
      edwards_curve/edpoint_test.go

+ 6
- 2
edwards_curve/edparams.go

@ -10,8 +10,8 @@ var (
func init() { func init() {
// https://neuromancer.sk/std/other/Ed25519 // https://neuromancer.sk/std/other/Ed25519
qEd25519, _ = new(big.Int).SetString("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed", 16)
n, _ := new(big.Int).SetString("1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed", 16)
qEd25519 = newBigInt("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed")
n := newBigInt("1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed")
// TODO: is this ok? // TODO: is this ok?
// h := big.NewInt(8) // h := big.NewInt(8)
// rEd25519 = new(big.Int).Mul(n, h) // rEd25519 = new(big.Int).Mul(n, h)
@ -24,6 +24,10 @@ func (fp Ed25519) NbLimbs() uint { return 4 }
func (fp Ed25519) BitsPerLimb() uint { return 64 } func (fp Ed25519) BitsPerLimb() uint { return 64 }
func (fp Ed25519) IsPrime() bool { return true } func (fp Ed25519) IsPrime() bool { return true }
func (fp Ed25519) Modulus() *big.Int { return qEd25519 } func (fp Ed25519) Modulus() *big.Int { return qEd25519 }
func (fp Ed25519) Generator() (*big.Int, *big.Int) {
return newBigInt("216936D3CD6E53FEC0A4E231FDD6DC5C692CC7609525A7B2C9562D608F25D51A"),
newBigInt("6666666666666666666666666666666666666666666666666666666666666658")
}
type Ed25519Scalars struct{} type Ed25519Scalars struct{}

+ 67
- 48
edwards_curve/edpoint.go

@ -44,8 +44,8 @@ func newBigInt(s string) *big.Int {
// equation and generator). But for now we don't do arbitrary curves. // equation and generator). But for now we don't do arbitrary curves.
type Curve[T, S emulated.FieldParams] struct { type Curve[T, S emulated.FieldParams] struct {
A emulated.Element[T]
D emulated.Element[T]
a emulated.Element[T]
d emulated.Element[T]
// api is the native api, we construct it ourselves to be sure // api is the native api, we construct it ourselves to be sure
api frontend.API api frontend.API
@ -61,7 +61,7 @@ func (c *Curve[T, S]) Generator() AffinePoint[T] {
return c.g return c.g
} }
func newCurve[T, S emulated.FieldParams](api frontend.API, A, D, Gx, Gy emulated.Element[T]) (*Curve[T, S], error) {
func newCurve[T, S emulated.FieldParams](api frontend.API, a, d, Gx, Gy emulated.Element[T]) (*Curve[T, S], error) {
ba, err := emulated.NewField[T](api) ba, err := emulated.NewField[T](api)
if err != nil { if err != nil {
return nil, fmt.Errorf("new base api: %w", err) return nil, fmt.Errorf("new base api: %w", err)
@ -71,8 +71,8 @@ func newCurve[T, S emulated.FieldParams](api frontend.API, A, D, Gx, Gy emulated
return nil, fmt.Errorf("new scalar api: %w", err) return nil, fmt.Errorf("new scalar api: %w", err)
} }
return &Curve[T, S]{ return &Curve[T, S]{
A: A,
D: D,
a: a,
d: d,
api: api, api: api,
baseApi: ba, baseApi: ba,
scalarApi: sa, scalarApi: sa,
@ -102,50 +102,69 @@ func (c *Curve[T, S]) AssertIsEqual(p, q AffinePoint[T]) {
func (c *Curve[T, S]) AssertIsOnCurve(p AffinePoint[T]) { func (c *Curve[T, S]) AssertIsOnCurve(p AffinePoint[T]) {
xx := c.baseApi.Mul(p.X, p.X) xx := c.baseApi.Mul(p.X, p.X)
yy := c.baseApi.Mul(p.Y, p.Y) yy := c.baseApi.Mul(p.Y, p.Y)
fmt.Println(xx)
fmt.Println(c.A)
axx := c.baseApi.Mul(xx, c.A)
axx := c.baseApi.Mul(xx, c.a)
lhs := c.baseApi.Add(axx, yy) lhs := c.baseApi.Add(axx, yy)
dxx := c.baseApi.Mul(xx, c.D)
dxx := c.baseApi.Mul(xx, c.d)
dxxyy := c.baseApi.Mul(dxx, yy) dxxyy := c.baseApi.Mul(dxx, yy)
rhs := c.baseApi.Add(dxxyy, 1) rhs := c.baseApi.Add(dxxyy, 1)
c.baseApi.AssertIsEqual(lhs, rhs) c.baseApi.AssertIsEqual(lhs, rhs)
} }
// func (c *Curve[T, S]) Add(q, r AffinePoint[T]) AffinePoint[T] {
// // compute lambda = (p1.y-p.y)/(p1.x-p.x)
// lambda := c.baseApi.DivUnchecked(c.baseApi.Sub(r.Y, q.Y), c.baseApi.Sub(r.X, q.X))
func (c *Curve[T, S]) Add(q, r AffinePoint[T]) AffinePoint[T] {
// u = (x1 + y1) * (x2 + y2)
u1 := c.baseApi.Mul(q.X, c.a)
u1 = c.baseApi.Sub(q.Y, u1)
u2 := c.baseApi.Add(r.X, r.Y)
u := c.baseApi.Mul(u1, u2)
// // xr = lambda**2-p.x-p1.x
// xr := c.baseApi.Sub(c.baseApi.Mul(lambda, lambda), c.baseApi.Add(q.X, r.X))
// v0 = x1 * y2
v0 := c.baseApi.Mul(r.Y, q.X)
// // p.y = lambda(p.x-xr) - p.y
// py := c.baseApi.Sub(c.baseApi.Mul(lambda, c.baseApi.Sub(q.X, xr)), q.Y)
// v1 = x2 * y1
v1 := c.baseApi.Mul(r.X, q.Y)
// return AffinePoint[T]{
// X: xr.(emulated.Element[T]),
// Y: py.(emulated.Element[T]),
// }
// }
// v2 = d * v0 * v1
v2 := c.baseApi.Mul(c.d, v0, v1)
// func (c *Curve[T, S]) Double(p AffinePoint[T]) AffinePoint[T] {
var px, py frontend.Variable
// // compute lambda = (3*p1.x**2+a)/2*p1.y, here we assume a=0 (j invariant 0 curve)
// lambda := c.baseApi.DivUnchecked(c.baseApi.Mul(p.X, p.X, 3), c.baseApi.Mul(p.Y, 2))
// x = (v0 + v1) / (1 + v2)
px = c.baseApi.Add(v0, v1)
px = c.baseApi.DivUnchecked(px, c.baseApi.Add(1, v2))
// // xr = lambda**2-p1.x-p1.x
// xr := c.baseApi.Sub(c.baseApi.Mul(lambda, lambda), c.baseApi.Mul(p.X, 2))
// y = (u + a * v0 - v1) / (1 - v2)
py = c.baseApi.Mul(c.a, v0)
py = c.baseApi.Sub(py, v1)
py = c.baseApi.Add(py, u)
py = c.baseApi.DivUnchecked(py, c.baseApi.Sub(1, v2))
// // p.y = lambda(p.x-xr) - p.y
// py := c.baseApi.Sub(c.baseApi.Mul(lambda, c.baseApi.Sub(p.X, xr)), p.Y)
return AffinePoint[T]{
X: px.(emulated.Element[T]),
Y: py.(emulated.Element[T]),
}
}
func (c *Curve[T, S]) Double(p AffinePoint[T]) AffinePoint[T] {
u := c.baseApi.Mul(p.X, p.Y)
v := c.baseApi.Mul(p.X, p.X)
w := c.baseApi.Mul(p.Y, p.Y)
// return AffinePoint[T]{
// X: xr.(emulated.Element[T]),
// Y: py.(emulated.Element[T]),
// }
// }
n1 := c.baseApi.Mul(2, u)
av := c.baseApi.Mul(v, c.a)
n2 := c.baseApi.Sub(w, av)
d1 := c.baseApi.Add(w, av)
d2 := c.baseApi.Sub(2, d1)
px := c.baseApi.DivUnchecked(n1, d1)
py := c.baseApi.DivUnchecked(n2, d2)
return AffinePoint[T]{
X: px.(emulated.Element[T]),
Y: py.(emulated.Element[T]),
}
}
func (c *Curve[T, S]) Select(b frontend.Variable, p, q AffinePoint[T]) AffinePoint[T] { func (c *Curve[T, S]) Select(b frontend.Variable, p, q AffinePoint[T]) AffinePoint[T] {
x := c.baseApi.Select(b, p.X, q.X) x := c.baseApi.Select(b, p.X, q.X)
@ -156,18 +175,18 @@ func (c *Curve[T, S]) Select(b frontend.Variable, p, q AffinePoint[T]) AffinePoi
} }
} }
// func (c *Curve[T, S]) ScalarMul(p AffinePoint[T], s emulated.Element[S]) AffinePoint[T] {
// res := p
// acc := c.Double(p)
// sBits := c.scalarApi.ToBinary(s)
// for i := 1; i < len(sBits); i++ {
// tmp := c.Add(res, acc)
// res = c.Select(sBits[i], tmp, res)
// acc = c.Double(acc)
// }
// tmp := c.Add(res, c.Neg(p))
// res = c.Select(sBits[0], res, tmp)
// return res
// }
func (c *Curve[T, S]) ScalarMul(p AffinePoint[T], s emulated.Element[S]) AffinePoint[T] {
res := p
acc := c.Double(p)
sBits := c.scalarApi.ToBinary(s)
for i := 1; i < len(sBits); i++ {
tmp := c.Add(res, acc)
res = c.Select(sBits[i], tmp, res)
acc = c.Double(acc)
}
tmp := c.Add(res, c.Neg(p))
res = c.Select(sBits[0], res, tmp)
return res
}

+ 48
- 1
edwards_curve/edpoint_test.go

@ -1,6 +1,7 @@
package edwards_curve package edwards_curve
import ( import (
"math/big"
"testing" "testing"
"github.com/consensys/gnark-crypto/ecc" "github.com/consensys/gnark-crypto/ecc"
@ -23,7 +24,7 @@ func (c *OnCurveTest[T, S]) Define(api frontend.API) error {
return nil return nil
} }
func TestGenerator(t *testing.T) {
func TestGeneratorIsOnCurve(t *testing.T) {
assert := test.NewAssert(t) assert := test.NewAssert(t)
circuit := OnCurveTest[Ed25519, Ed25519Scalars]{} circuit := OnCurveTest[Ed25519, Ed25519Scalars]{}
witness := OnCurveTest[Ed25519, Ed25519Scalars]{ witness := OnCurveTest[Ed25519, Ed25519Scalars]{
@ -36,6 +37,52 @@ func TestGenerator(t *testing.T) {
assert.NoError(err) assert.NoError(err)
} }
// s1*x1 + s2*x2 = y
type MulAddTest[T, S emulated.FieldParams] struct {
X1, X2 AffinePoint[T]
S1, S2 emulated.Element[S]
Y AffinePoint[T]
}
func (c *MulAddTest[T, S]) Define(api frontend.API) error {
cr, err := New[T, S](api)
if err != nil {
return err
}
X1S1 := cr.ScalarMul(c.X1, c.S1)
X2S2 := cr.ScalarMul(c.X2, c.S2)
sum := cr.Add(X1S1, X2S2)
cr.AssertIsEqual(sum, c.Y)
cr.scalarApi.AssertIsEqual(
cr.scalarApi.Add(c.S1, c.S2),
emulated.NewElement[S](big.NewInt(1)),
)
return nil
}
func TestGeneratorGeneratesCurveOfCorrectOrder(t *testing.T) {
assert := test.NewAssert(t)
Gx, Gy := Ed25519{}.Generator()
G := AffinePoint[Ed25519]{
X: emulated.NewElement[Ed25519](Gx),
Y: emulated.NewElement[Ed25519](Gy),
}
for i := 2; i <= 3; i++ {
S1 := new(big.Int).Sub(rEd25519, big.NewInt(int64(i - 1)))
S2 := big.NewInt(int64(i))
circuit := MulAddTest[Ed25519, Ed25519Scalars]{}
witness := MulAddTest[Ed25519, Ed25519Scalars]{
X1: G,
X2: G,
S1: emulated.NewElement[Ed25519Scalars](S1),
S2: emulated.NewElement[Ed25519Scalars](S2),
Y: G,
}
err := test.IsSolved(&circuit, &witness, testCurve.ScalarField())
assert.NoError(err)
}
}
var testCurve = ecc.BN254 var testCurve = ecc.BN254
// type NegTest[T, S emulated.FieldParams] struct { // type NegTest[T, S emulated.FieldParams] struct {

Loading…
Cancel
Save