mirror of
https://github.com/arnaucube/gnark-plonky2-verifier.git
synced 2026-01-12 17:11:31 +01:00
fixed bugs
This commit is contained in:
@@ -26,7 +26,7 @@ func (p *PlonkChip) expPowerOf2Extension(x QuadraticExtension) QuadraticExtensio
|
|||||||
|
|
||||||
func (p *PlonkChip) evalL0(x QuadraticExtension, xPowN QuadraticExtension) QuadraticExtension {
|
func (p *PlonkChip) evalL0(x QuadraticExtension, xPowN QuadraticExtension) QuadraticExtension {
|
||||||
// L_0(x) = (x^n - 1) / (n * (x - 1))
|
// L_0(x) = (x^n - 1) / (n * (x - 1))
|
||||||
eval_zero_poly := p.qe.SubExtension(
|
evalZeroPoly := p.qe.SubExtension(
|
||||||
xPowN,
|
xPowN,
|
||||||
p.qe.ONE,
|
p.qe.ONE,
|
||||||
)
|
)
|
||||||
@@ -35,7 +35,7 @@ func (p *PlonkChip) evalL0(x QuadraticExtension, xPowN QuadraticExtension) Quadr
|
|||||||
p.qe.DEGREE_BITS_QE,
|
p.qe.DEGREE_BITS_QE,
|
||||||
)
|
)
|
||||||
return p.qe.DivExtension(
|
return p.qe.DivExtension(
|
||||||
eval_zero_poly,
|
evalZeroPoly,
|
||||||
denominator,
|
denominator,
|
||||||
)
|
)
|
||||||
}
|
}
|
||||||
@@ -43,17 +43,17 @@ func (p *PlonkChip) evalL0(x QuadraticExtension, xPowN QuadraticExtension) Quadr
|
|||||||
func (p *PlonkChip) checkPartialProducts(
|
func (p *PlonkChip) checkPartialProducts(
|
||||||
numerators []QuadraticExtension,
|
numerators []QuadraticExtension,
|
||||||
denominators []QuadraticExtension,
|
denominators []QuadraticExtension,
|
||||||
challengeNum uint64) []QuadraticExtension {
|
challengeNum uint64,
|
||||||
|
) []QuadraticExtension {
|
||||||
numPartProds := p.commonData.NumPartialProducts
|
numPartProds := p.commonData.NumPartialProducts
|
||||||
quotDegreeFactor := p.commonData.QuotientDegreeFactor
|
quotDegreeFactor := p.commonData.QuotientDegreeFactor
|
||||||
|
|
||||||
productAccs := make([]QuadraticExtension, numPartProds+2)
|
productAccs := make([]QuadraticExtension, 0, numPartProds+2)
|
||||||
productAccs = append(productAccs, p.openings.PlonkZs[challengeNum])
|
productAccs = append(productAccs, p.openings.PlonkZs[challengeNum])
|
||||||
productAccs = append(productAccs, p.openings.PartialProducts[challengeNum*numPartProds:(challengeNum+1)*numPartProds]...)
|
productAccs = append(productAccs, p.openings.PartialProducts[challengeNum*numPartProds:(challengeNum+1)*numPartProds]...)
|
||||||
productAccs = append(productAccs, p.openings.PlonkZsNext[challengeNum])
|
productAccs = append(productAccs, p.openings.PlonkZsNext[challengeNum])
|
||||||
|
|
||||||
partialProductChecks := make([]QuadraticExtension, numPartProds)
|
partialProductChecks := make([]QuadraticExtension, 0, numPartProds)
|
||||||
|
|
||||||
for i := uint64(0); i < numPartProds; i += 1 {
|
for i := uint64(0); i < numPartProds; i += 1 {
|
||||||
ppStartIdx := i * quotDegreeFactor
|
ppStartIdx := i * quotDegreeFactor
|
||||||
@@ -71,49 +71,50 @@ func (p *PlonkChip) checkPartialProducts(
|
|||||||
|
|
||||||
partialProductChecks = append(partialProductChecks, partialProductCheck)
|
partialProductChecks = append(partialProductChecks, partialProductCheck)
|
||||||
}
|
}
|
||||||
|
|
||||||
return partialProductChecks
|
return partialProductChecks
|
||||||
}
|
}
|
||||||
|
|
||||||
func (p *PlonkChip) evalVanishingPoly() []QuadraticExtension {
|
func (p *PlonkChip) evalVanishingPoly() []QuadraticExtension {
|
||||||
// Calculate the k[i] * x
|
// Calculate the k[i] * x
|
||||||
s_ids := make([]QuadraticExtension, p.commonData.Config.NumRoutedWires)
|
sIDs := make([]QuadraticExtension, p.commonData.Config.NumRoutedWires)
|
||||||
|
|
||||||
for i := uint64(0); i < p.commonData.Config.NumRoutedWires; i++ {
|
for i := uint64(0); i < p.commonData.Config.NumRoutedWires; i++ {
|
||||||
p.qe.ScalarMulExtension(p.proofChallenges.PlonkZeta, p.commonData.KIs[i])
|
sIDs[i] = p.qe.ScalarMulExtension(p.proofChallenges.PlonkZeta, p.commonData.KIs[i])
|
||||||
}
|
}
|
||||||
|
|
||||||
// Calculate zeta^n
|
// Calculate zeta^n
|
||||||
zeta_pow_n := p.expPowerOf2Extension(p.proofChallenges.PlonkZeta)
|
zetaPowN := p.expPowerOf2Extension(p.proofChallenges.PlonkZeta)
|
||||||
|
|
||||||
// Calculate L_0(zeta)
|
// Calculate L_0(zeta)
|
||||||
l_0_zeta := p.evalL0(p.proofChallenges.PlonkZeta, zeta_pow_n)
|
l0Zeta := p.evalL0(p.proofChallenges.PlonkZeta, zetaPowN)
|
||||||
|
|
||||||
vanishing_z1_terms := make([]QuadraticExtension, p.commonData.Config.NumChallenges)
|
vanishingZ1Terms := make([]QuadraticExtension, 0, p.commonData.Config.NumChallenges)
|
||||||
vanishing_partial_products_terms := make([]QuadraticExtension, p.commonData.Config.NumChallenges*p.commonData.NumPartialProducts)
|
vanishingPartialProductsTerms := make([]QuadraticExtension, 0, p.commonData.Config.NumChallenges*p.commonData.NumPartialProducts)
|
||||||
numerator_values := make([]QuadraticExtension, p.commonData.Config.NumChallenges*p.commonData.Config.NumRoutedWires)
|
|
||||||
denominator_values := make([]QuadraticExtension, p.commonData.Config.NumChallenges*p.commonData.Config.NumRoutedWires)
|
|
||||||
for i := uint64(0); i < p.commonData.Config.NumChallenges; i++ {
|
for i := uint64(0); i < p.commonData.Config.NumChallenges; i++ {
|
||||||
// L_0(zeta) (Z(zeta) - 1) = 0
|
// L_0(zeta) (Z(zeta) - 1) = 0
|
||||||
z1_term := p.qe.SubExtension(
|
z1_term := p.qe.SubExtension(
|
||||||
p.qe.MulExtension(l_0_zeta, p.openings.PlonkZs[i]),
|
p.qe.MulExtension(l0Zeta, p.openings.PlonkZs[i]),
|
||||||
l_0_zeta,
|
l0Zeta,
|
||||||
)
|
)
|
||||||
vanishing_z1_terms = append(vanishing_z1_terms, z1_term)
|
vanishingZ1Terms = append(vanishingZ1Terms, z1_term)
|
||||||
|
|
||||||
|
numeratorValues := make([]QuadraticExtension, 0, p.commonData.Config.NumRoutedWires)
|
||||||
|
denominatorValues := make([]QuadraticExtension, 0, p.commonData.Config.NumRoutedWires)
|
||||||
for j := uint64(0); j < p.commonData.Config.NumRoutedWires; j++ {
|
for j := uint64(0); j < p.commonData.Config.NumRoutedWires; j++ {
|
||||||
// The numerator is `beta * s_id + wire_value + gamma`, and the denominator is
|
// The numerator is `beta * s_id + wire_value + gamma`, and the denominator is
|
||||||
// `beta * s_sigma + wire_value + gamma`.
|
// `beta * s_sigma + wire_value + gamma`.
|
||||||
wire_value_plus_gamma := p.qe.AddExtension(
|
|
||||||
|
wireValuePlusGamma := p.qe.AddExtension(
|
||||||
p.openings.Wires[j],
|
p.openings.Wires[j],
|
||||||
p.qe.FieldToQE(p.proofChallenges.PlonkGammas[i]),
|
p.qe.FieldToQE(p.proofChallenges.PlonkGammas[i]),
|
||||||
)
|
)
|
||||||
|
|
||||||
numerator := p.qe.AddExtension(
|
numerator := p.qe.AddExtension(
|
||||||
p.qe.MulExtension(
|
p.qe.MulExtension(
|
||||||
p.qe.FieldToQE(p.proofChallenges.PlonkBetas[i]),
|
p.qe.FieldToQE(p.proofChallenges.PlonkBetas[i]),
|
||||||
s_ids[j],
|
sIDs[j],
|
||||||
),
|
),
|
||||||
wire_value_plus_gamma,
|
wireValuePlusGamma,
|
||||||
)
|
)
|
||||||
|
|
||||||
denominator := p.qe.AddExtension(
|
denominator := p.qe.AddExtension(
|
||||||
@@ -121,20 +122,20 @@ func (p *PlonkChip) evalVanishingPoly() []QuadraticExtension {
|
|||||||
p.qe.FieldToQE(p.proofChallenges.PlonkBetas[i]),
|
p.qe.FieldToQE(p.proofChallenges.PlonkBetas[i]),
|
||||||
p.openings.PlonkSigmas[j],
|
p.openings.PlonkSigmas[j],
|
||||||
),
|
),
|
||||||
wire_value_plus_gamma,
|
wireValuePlusGamma,
|
||||||
)
|
)
|
||||||
|
|
||||||
numerator_values = append(numerator_values, numerator)
|
numeratorValues = append(numeratorValues, numerator)
|
||||||
denominator_values = append(denominator_values, denominator)
|
denominatorValues = append(denominatorValues, denominator)
|
||||||
}
|
}
|
||||||
|
|
||||||
vanishing_partial_products_terms = append(
|
vanishingPartialProductsTerms = append(
|
||||||
vanishing_partial_products_terms,
|
vanishingPartialProductsTerms,
|
||||||
p.checkPartialProducts(numerator_values, denominator_values, i)...,
|
p.checkPartialProducts(numeratorValues, denominatorValues, i)...,
|
||||||
)
|
)
|
||||||
}
|
}
|
||||||
|
|
||||||
return vanishing_partial_products_terms
|
return vanishingPartialProductsTerms
|
||||||
}
|
}
|
||||||
|
|
||||||
func (p *PlonkChip) Verify() {
|
func (p *PlonkChip) Verify() {
|
||||||
|
|||||||
Reference in New Issue
Block a user