mirror of
https://github.com/arnaucube/gnark-plonky2-verifier.git
synced 2026-01-12 09:01:32 +01:00
plonk verification circuit in progress
This commit is contained in:
136
plonky2_verifier/plonk.go
Normal file
136
plonky2_verifier/plonk.go
Normal file
@@ -0,0 +1,136 @@
|
||||
package plonky2_verifier
|
||||
|
||||
import (
|
||||
. "gnark-ed25519/field"
|
||||
|
||||
"github.com/consensys/gnark/frontend"
|
||||
)
|
||||
|
||||
type PlonkChip struct {
|
||||
api frontend.API
|
||||
field frontend.API
|
||||
qe *QuadraticExtensionAPI
|
||||
|
||||
commonData CommonCircuitData
|
||||
proofChallenges ProofChallenges
|
||||
openings OpeningSet
|
||||
}
|
||||
|
||||
func (p *PlonkChip) expPowerOf2Extension(x QuadraticExtension) QuadraticExtension {
|
||||
for i := uint64(0); i < p.commonData.DegreeBits; i++ {
|
||||
x = p.qe.SquareExtension(x)
|
||||
}
|
||||
|
||||
return x
|
||||
}
|
||||
|
||||
func (p *PlonkChip) evalL0(x QuadraticExtension, xPowN QuadraticExtension) QuadraticExtension {
|
||||
// L_0(x) = (x^n - 1) / (n * (x - 1))
|
||||
eval_zero_poly := p.qe.SubExtension(
|
||||
xPowN,
|
||||
p.qe.ONE,
|
||||
)
|
||||
denominator := p.qe.SubExtension(
|
||||
p.qe.ScalarMulExtension(x, p.qe.DEGREE_BITS_F),
|
||||
p.qe.DEGREE_BITS_QE,
|
||||
)
|
||||
return p.qe.DivExtension(
|
||||
eval_zero_poly,
|
||||
denominator,
|
||||
)
|
||||
}
|
||||
|
||||
func (p *PlonkChip) checkPartialProductsCircuit(
|
||||
numerators []QuadraticExtension,
|
||||
denominators []QuadraticExtension,
|
||||
challengeNum uint64) []QuadraticExtension {
|
||||
|
||||
productAccs := make([]QuadraticExtension, p.commonData.NumPartialProducts+2)
|
||||
productAccs = append(productAccs, p.openings.PlonkZs[challengeNum])
|
||||
productAccs = append(productAccs, p.openings.PartialProducts[challengeNum*p.commonData.NumPartialProducts:(challengeNum+1)*p.commonData.NumPartialProducts]...)
|
||||
productAccs = append(productAccs, p.openings.PlonkZsNext[challengeNum])
|
||||
|
||||
partialProductChecks := make([]QuadraticExtension, p)
|
||||
|
||||
for i := uint64(0); i < numPartialProducts; i += 1 {
|
||||
ppStartIdx := i * p.commonData.QuotientDegreeFactor
|
||||
numeProduct := numerators[ppStartIdx]
|
||||
denoProduct := denominators[ppStartIdx]
|
||||
for j := uint64(1); j < p.commonData.QuotientDegreeFactor; j++ {
|
||||
numeProduct = p.qe.MulExtension(numeProduct, numerators[ppStartIdx+j])
|
||||
denoProduct = p.qe.MulExtension(denoProduct, denominators[ppStartIdx+j])
|
||||
}
|
||||
|
||||
partialProductCheck := p.qe.SubExtension(
|
||||
p.qe.MulExtension(productAccs[i], numeProduct),
|
||||
p.qe.MulExtension(productAccs[i+1], denoProduct),
|
||||
)
|
||||
|
||||
partialProductChecks = append(partialProductChecks, partialProductCheck)
|
||||
}
|
||||
|
||||
return partialProductChecks
|
||||
}
|
||||
|
||||
func (p *PlonkChip) evalVanishingPoly() []QuadraticExtension {
|
||||
// Calculate the k[i] * x
|
||||
s_ids := make([]QuadraticExtension, p.commonData.Config.NumRoutedWires)
|
||||
|
||||
for i := uint64(0); i < p.commonData.Config.NumRoutedWires; i++ {
|
||||
p.qe.ScalarMulExtension(p.proofChallenges.PlonkZeta, p.commonData.KIs[i])
|
||||
}
|
||||
|
||||
// Calculate zeta^n
|
||||
zeta_pow_n := p.expPowerOf2Extension(p.proofChallenges.PlonkZeta)
|
||||
|
||||
// Calculate L_0(zeta)
|
||||
l_0_zeta := p.evalL0(p.proofChallenges.PlonkZeta, zeta_pow_n)
|
||||
|
||||
vanishing_z1_terms := make([]QuadraticExtension, p.commonData.Config.NumChallenges)
|
||||
numerator_values := make([]QuadraticExtension, p.commonData.Config.NumChallenges*p.commonData.Config.NumRoutedWires)
|
||||
denominator_values := make([]QuadraticExtension, p.commonData.Config.NumChallenges*p.commonData.Config.NumRoutedWires)
|
||||
for i := uint64(0); i < p.commonData.Config.NumChallenges; i++ {
|
||||
// L_0(zeta) (Z(zeta) - 1) = 0
|
||||
z1_term := p.qe.SubExtension(
|
||||
p.qe.MulExtension(l_0_zeta, p.openings.PlonkZs[i]),
|
||||
l_0_zeta,
|
||||
)
|
||||
vanishing_z1_terms = append(vanishing_z1_terms, z1_term)
|
||||
|
||||
for j := uint64(0); j < p.commonData.Config.NumRoutedWires; j++ {
|
||||
// The numerator is `beta * s_id + wire_value + gamma`, and the denominator is
|
||||
// `beta * s_sigma + wire_value + gamma`.
|
||||
wire_value_plus_gamma := p.qe.AddExtension(p.openings.Wires[j], p.proofChallenges.FriChallenges.FriBetas[i])
|
||||
numerator := p.qe.AddExtension(
|
||||
p.qe.MulExtension(
|
||||
p.proofChallenges.FriChallenges.FriBetas[i],
|
||||
s_ids[j],
|
||||
),
|
||||
wire_value_plus_gamma,
|
||||
)
|
||||
|
||||
denominator := p.qe.AddExtension(
|
||||
p.qe.MulExtension(
|
||||
p.proofChallenges.FriChallenges.FriBetas[i],
|
||||
p.openings.PlonkSigmas[j],
|
||||
),
|
||||
wire_value_plus_gamma,
|
||||
)
|
||||
|
||||
numerator_values = append(numerator_values, numerator)
|
||||
denominator_values = append(denominator_values, denominator)
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
func (p *PlonkChip) Verify() {
|
||||
zeta_pow_deg := p.expPowerOf2Extension(p.proofChallenges.PlonkZeta)
|
||||
p.evalVanishingPoly(p.proofChallenges.PlonkZeta, zeta_pow_deg)
|
||||
|
||||
vanishingZTerms := make(F, commonData.Config.NumChallenges)
|
||||
|
||||
for i := 0; i < int(commonData.Config.NumChallenges); i++ {
|
||||
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user