mirror of
https://github.com/arnaucube/gnark-plonky2-verifier.git
synced 2026-01-12 09:01:32 +01:00
added plonk_benchmark
This commit is contained in:
@@ -1,7 +1,6 @@
|
||||
package plonky2_verifier
|
||||
|
||||
import (
|
||||
"gnark-ed25519/field"
|
||||
. "gnark-ed25519/field"
|
||||
|
||||
"github.com/consensys/gnark/frontend"
|
||||
@@ -33,36 +32,34 @@ var QUOTIENT = PlonkOracle{
|
||||
}
|
||||
|
||||
type PlonkChip struct {
|
||||
api frontend.API
|
||||
qe *QuadraticExtensionAPI
|
||||
api frontend.API
|
||||
qeAPI *QuadraticExtensionAPI
|
||||
|
||||
commonData CommonCircuitData
|
||||
proofChallenges ProofChallenges
|
||||
openings OpeningSet
|
||||
commonData CommonCircuitData
|
||||
|
||||
DEGREE F
|
||||
DEGREE_BITS_F F
|
||||
DEGREE_QE QuadraticExtension
|
||||
}
|
||||
|
||||
func NewPlonkChip(api frontend.API, qe *QuadraticExtensionAPI, commonData CommonCircuitData) *PlonkChip {
|
||||
func NewPlonkChip(api frontend.API, qeAPI *QuadraticExtensionAPI, commonData CommonCircuitData) *PlonkChip {
|
||||
// TODO: Should degreeBits be verified that it fits within the field and that degree is within uint64?
|
||||
|
||||
return &PlonkChip{
|
||||
api: api,
|
||||
qe: qe,
|
||||
api: api,
|
||||
qeAPI: qeAPI,
|
||||
|
||||
commonData: commonData,
|
||||
|
||||
DEGREE: NewFieldElement(1 << commonData.DegreeBits),
|
||||
DEGREE_BITS_F: NewFieldElement(commonData.DegreeBits),
|
||||
DEGREE_QE: QuadraticExtension{NewFieldElement(1 << commonData.DegreeBits), field.ZERO_F},
|
||||
DEGREE_QE: QuadraticExtension{NewFieldElement(1 << commonData.DegreeBits), ZERO_F},
|
||||
}
|
||||
}
|
||||
|
||||
func (p *PlonkChip) expPowerOf2Extension(x QuadraticExtension) QuadraticExtension {
|
||||
for i := uint64(0); i < p.commonData.DegreeBits; i++ {
|
||||
x = p.qe.SquareExtension(x)
|
||||
x = p.qeAPI.SquareExtension(x)
|
||||
}
|
||||
|
||||
return x
|
||||
@@ -70,15 +67,15 @@ func (p *PlonkChip) expPowerOf2Extension(x QuadraticExtension) QuadraticExtensio
|
||||
|
||||
func (p *PlonkChip) evalL0(x QuadraticExtension, xPowN QuadraticExtension) QuadraticExtension {
|
||||
// L_0(x) = (x^n - 1) / (n * (x - 1))
|
||||
evalZeroPoly := p.qe.SubExtension(
|
||||
evalZeroPoly := p.qeAPI.SubExtension(
|
||||
xPowN,
|
||||
p.qe.ONE_QE,
|
||||
p.qeAPI.ONE_QE,
|
||||
)
|
||||
denominator := p.qe.SubExtension(
|
||||
p.qe.ScalarMulExtension(x, p.DEGREE),
|
||||
denominator := p.qeAPI.SubExtension(
|
||||
p.qeAPI.ScalarMulExtension(x, p.DEGREE),
|
||||
p.DEGREE_QE,
|
||||
)
|
||||
return p.qe.DivExtension(
|
||||
return p.qeAPI.DivExtension(
|
||||
evalZeroPoly,
|
||||
denominator,
|
||||
)
|
||||
@@ -88,14 +85,15 @@ func (p *PlonkChip) checkPartialProducts(
|
||||
numerators []QuadraticExtension,
|
||||
denominators []QuadraticExtension,
|
||||
challengeNum uint64,
|
||||
openings OpeningSet,
|
||||
) []QuadraticExtension {
|
||||
numPartProds := p.commonData.NumPartialProducts
|
||||
quotDegreeFactor := p.commonData.QuotientDegreeFactor
|
||||
|
||||
productAccs := make([]QuadraticExtension, 0, numPartProds+2)
|
||||
productAccs = append(productAccs, p.openings.PlonkZs[challengeNum])
|
||||
productAccs = append(productAccs, p.openings.PartialProducts[challengeNum*numPartProds:(challengeNum+1)*numPartProds]...)
|
||||
productAccs = append(productAccs, p.openings.PlonkZsNext[challengeNum])
|
||||
productAccs = append(productAccs, openings.PlonkZs[challengeNum])
|
||||
productAccs = append(productAccs, openings.PartialProducts[challengeNum*numPartProds:(challengeNum+1)*numPartProds]...)
|
||||
productAccs = append(productAccs, openings.PlonkZsNext[challengeNum])
|
||||
|
||||
partialProductChecks := make([]QuadraticExtension, 0, numPartProds)
|
||||
|
||||
@@ -104,13 +102,13 @@ func (p *PlonkChip) checkPartialProducts(
|
||||
numeProduct := numerators[ppStartIdx]
|
||||
denoProduct := denominators[ppStartIdx]
|
||||
for j := uint64(1); j < quotDegreeFactor; j++ {
|
||||
numeProduct = p.qe.MulExtension(numeProduct, numerators[ppStartIdx+j])
|
||||
denoProduct = p.qe.MulExtension(denoProduct, denominators[ppStartIdx+j])
|
||||
numeProduct = p.qeAPI.MulExtension(numeProduct, numerators[ppStartIdx+j])
|
||||
denoProduct = p.qeAPI.MulExtension(denoProduct, denominators[ppStartIdx+j])
|
||||
}
|
||||
|
||||
partialProductCheck := p.qe.SubExtension(
|
||||
p.qe.MulExtension(productAccs[i], numeProduct),
|
||||
p.qe.MulExtension(productAccs[i+1], denoProduct),
|
||||
partialProductCheck := p.qeAPI.SubExtension(
|
||||
p.qeAPI.MulExtension(productAccs[i], numeProduct),
|
||||
p.qeAPI.MulExtension(productAccs[i+1], denoProduct),
|
||||
)
|
||||
|
||||
partialProductChecks = append(partialProductChecks, partialProductCheck)
|
||||
@@ -118,24 +116,24 @@ func (p *PlonkChip) checkPartialProducts(
|
||||
return partialProductChecks
|
||||
}
|
||||
|
||||
func (p *PlonkChip) evalVanishingPoly(zetaPowN QuadraticExtension) []QuadraticExtension {
|
||||
func (p *PlonkChip) evalVanishingPoly(proofChallenges ProofChallenges, openings OpeningSet, zetaPowN QuadraticExtension) []QuadraticExtension {
|
||||
// Calculate the k[i] * x
|
||||
sIDs := make([]QuadraticExtension, p.commonData.Config.NumRoutedWires)
|
||||
|
||||
for i := uint64(0); i < p.commonData.Config.NumRoutedWires; i++ {
|
||||
sIDs[i] = p.qe.ScalarMulExtension(p.proofChallenges.PlonkZeta, p.commonData.KIs[i])
|
||||
sIDs[i] = p.qeAPI.ScalarMulExtension(proofChallenges.PlonkZeta, p.commonData.KIs[i])
|
||||
}
|
||||
|
||||
// Calculate L_0(zeta)
|
||||
l0Zeta := p.evalL0(p.proofChallenges.PlonkZeta, zetaPowN)
|
||||
l0Zeta := p.evalL0(proofChallenges.PlonkZeta, zetaPowN)
|
||||
|
||||
vanishingZ1Terms := make([]QuadraticExtension, 0, p.commonData.Config.NumChallenges)
|
||||
vanishingPartialProductsTerms := make([]QuadraticExtension, 0, p.commonData.Config.NumChallenges*p.commonData.NumPartialProducts)
|
||||
for i := uint64(0); i < p.commonData.Config.NumChallenges; i++ {
|
||||
// L_0(zeta) (Z(zeta) - 1) = 0
|
||||
z1_term := p.qe.MulExtension(
|
||||
z1_term := p.qeAPI.MulExtension(
|
||||
l0Zeta,
|
||||
p.qe.SubExtension(p.openings.PlonkZs[i], p.qe.ONE_QE))
|
||||
p.qeAPI.SubExtension(openings.PlonkZs[i], p.qeAPI.ONE_QE))
|
||||
vanishingZ1Terms = append(vanishingZ1Terms, z1_term)
|
||||
|
||||
numeratorValues := make([]QuadraticExtension, 0, p.commonData.Config.NumRoutedWires)
|
||||
@@ -144,23 +142,23 @@ func (p *PlonkChip) evalVanishingPoly(zetaPowN QuadraticExtension) []QuadraticEx
|
||||
// The numerator is `beta * s_id + wire_value + gamma`, and the denominator is
|
||||
// `beta * s_sigma + wire_value + gamma`.
|
||||
|
||||
wireValuePlusGamma := p.qe.AddExtension(
|
||||
p.openings.Wires[j],
|
||||
p.qe.FieldToQE(p.proofChallenges.PlonkGammas[i]),
|
||||
wireValuePlusGamma := p.qeAPI.AddExtension(
|
||||
openings.Wires[j],
|
||||
p.qeAPI.FieldToQE(proofChallenges.PlonkGammas[i]),
|
||||
)
|
||||
|
||||
numerator := p.qe.AddExtension(
|
||||
p.qe.MulExtension(
|
||||
p.qe.FieldToQE(p.proofChallenges.PlonkBetas[i]),
|
||||
numerator := p.qeAPI.AddExtension(
|
||||
p.qeAPI.MulExtension(
|
||||
p.qeAPI.FieldToQE(proofChallenges.PlonkBetas[i]),
|
||||
sIDs[j],
|
||||
),
|
||||
wireValuePlusGamma,
|
||||
)
|
||||
|
||||
denominator := p.qe.AddExtension(
|
||||
p.qe.MulExtension(
|
||||
p.qe.FieldToQE(p.proofChallenges.PlonkBetas[i]),
|
||||
p.openings.PlonkSigmas[j],
|
||||
denominator := p.qeAPI.AddExtension(
|
||||
p.qeAPI.MulExtension(
|
||||
p.qeAPI.FieldToQE(proofChallenges.PlonkBetas[i]),
|
||||
openings.PlonkSigmas[j],
|
||||
),
|
||||
wireValuePlusGamma,
|
||||
)
|
||||
@@ -171,7 +169,7 @@ func (p *PlonkChip) evalVanishingPoly(zetaPowN QuadraticExtension) []QuadraticEx
|
||||
|
||||
vanishingPartialProductsTerms = append(
|
||||
vanishingPartialProductsTerms,
|
||||
p.checkPartialProducts(numeratorValues, denominatorValues, i)...,
|
||||
p.checkPartialProducts(numeratorValues, denominatorValues, i, openings)...,
|
||||
)
|
||||
}
|
||||
|
||||
@@ -179,7 +177,7 @@ func (p *PlonkChip) evalVanishingPoly(zetaPowN QuadraticExtension) []QuadraticEx
|
||||
|
||||
reducedValues := make([]QuadraticExtension, p.commonData.Config.NumChallenges)
|
||||
for i := uint64(0); i < p.commonData.Config.NumChallenges; i++ {
|
||||
reducedValues[i] = p.qe.ZERO_QE
|
||||
reducedValues[i] = p.qeAPI.ZERO_QE
|
||||
}
|
||||
|
||||
// TODO: Enable this check once the custom gate evaluations are added to the
|
||||
@@ -193,11 +191,11 @@ func (p *PlonkChip) evalVanishingPoly(zetaPowN QuadraticExtension) []QuadraticEx
|
||||
// reverse iterate the vanishingPartialProductsTerms array
|
||||
for i := len(vanishingTerms) - 1; i >= 0; i-- {
|
||||
for j := uint64(0); j < p.commonData.Config.NumChallenges; j++ {
|
||||
reducedValues[j] = p.qe.AddExtension(
|
||||
reducedValues[j] = p.qeAPI.AddExtension(
|
||||
vanishingTerms[i],
|
||||
p.qe.ScalarMulExtension(
|
||||
p.qeAPI.ScalarMulExtension(
|
||||
reducedValues[j],
|
||||
p.proofChallenges.PlonkAlphas[j],
|
||||
proofChallenges.PlonkAlphas[j],
|
||||
),
|
||||
)
|
||||
}
|
||||
@@ -206,30 +204,38 @@ func (p *PlonkChip) evalVanishingPoly(zetaPowN QuadraticExtension) []QuadraticEx
|
||||
return reducedValues
|
||||
}
|
||||
|
||||
func (p *PlonkChip) Verify() {
|
||||
func (p *PlonkChip) Verify(proofChallenges ProofChallenges, openings OpeningSet) {
|
||||
// Calculate zeta^n
|
||||
zetaPowN := p.expPowerOf2Extension(p.proofChallenges.PlonkZeta)
|
||||
zetaPowN := p.expPowerOf2Extension(proofChallenges.PlonkZeta)
|
||||
|
||||
vanishingPolysZeta := p.evalVanishingPoly(zetaPowN)
|
||||
vanishingPolysZeta := p.evalVanishingPoly(proofChallenges, openings, zetaPowN)
|
||||
|
||||
// Calculate Z(H)
|
||||
zHZeta := p.qe.SubExtension(zetaPowN, p.qe.ONE_QE)
|
||||
zHZeta := p.qeAPI.SubExtension(zetaPowN, p.qeAPI.ONE_QE)
|
||||
|
||||
// `quotient_polys_zeta` holds `num_challenges * quotient_degree_factor` evaluations.
|
||||
// Each chunk of `quotient_degree_factor` holds the evaluations of `t_0(zeta),...,t_{quotient_degree_factor-1}(zeta)`
|
||||
// where the "real" quotient polynomial is `t(X) = t_0(X) + t_1(X)*X^n + t_2(X)*X^{2n} + ...`.
|
||||
// So to reconstruct `t(zeta)` we can compute `reduce_with_powers(chunk, zeta^n)` for each
|
||||
// `quotient_degree_factor`-sized chunk of the original evaluations.
|
||||
for i := 0; i < len(p.openings.QuotientPolys); i += int(p.commonData.QuotientDegreeFactor) {
|
||||
prod := p.qe.MulExtension(
|
||||
for i := 0; i < len(vanishingPolysZeta); i++ {
|
||||
quotientPolysStartIdx := i * len(vanishingPolysZeta)
|
||||
quotientPolysEndIdx := quotientPolysStartIdx + len(vanishingPolysZeta)
|
||||
prod := p.qeAPI.MulExtension(
|
||||
zHZeta,
|
||||
p.qe.ReduceWithPowers(
|
||||
p.openings.QuotientPolys[i:i+int(p.commonData.QuotientDegreeFactor)],
|
||||
p.qeAPI.ReduceWithPowers(
|
||||
openings.QuotientPolys[quotientPolysStartIdx:quotientPolysEndIdx],
|
||||
zetaPowN,
|
||||
),
|
||||
)
|
||||
|
||||
// TODO: Uncomment this after adding in the custom gates evaluations
|
||||
//p.api.AssertIsEqual(vanishingPolysZeta[i], prod)
|
||||
//p.qeAPI.AssertIsEqual(vanishingPolysZeta[i], prod)
|
||||
|
||||
// For now, just put in a dummy equality check so that VS stops complaining about unused variables
|
||||
p.qeAPI.AssertIsEqual(
|
||||
p.qeAPI.MulExtension(vanishingPolysZeta[i], p.qeAPI.ZERO_QE),
|
||||
p.qeAPI.MulExtension(prod, p.qeAPI.ZERO_QE),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -38,10 +38,8 @@ func (circuit *TestPlonkCircuit) Define(api frontend.API) error {
|
||||
}
|
||||
|
||||
plonkChip := NewPlonkChip(api, qe, commonCircuitData)
|
||||
plonkChip.proofChallenges = proofChallenges
|
||||
plonkChip.openings = proofWithPis.Proof.Openings
|
||||
|
||||
plonkChip.Verify()
|
||||
plonkChip.Verify(proofChallenges, proofWithPis.Proof.Openings)
|
||||
return nil
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user