Use optimized goldilocks in codebase (#26)

* gl

* stage 1 optimizations

* working optimized poseidon

* Fix posedion tests

* in progress gate type refactor

* working gates

* working e2e

* hm'

* hm2

* debug saga continues

* more debugging cry

* more debug

* it finally works

* optimizations

* more optimizations

* new changes

* more optimizations

* more cleanup

* some refactoring

* new files

* flattening of packages

* working commit

* more refactor

* more flattening

* more flattening

* more more refactor

* more optimizations

* more optimizations

* more optimizations

* plonk benchmark

* plonk

* fix r1cs

* resolve kevin's comments

* Update goldilocks/base.go

Co-authored-by: Kevin Jue <kjue235@gmail.com>

* Update goldilocks/base.go

Co-authored-by: Kevin Jue <kjue235@gmail.com>

* Update goldilocks/base.go

Co-authored-by: Kevin Jue <kjue235@gmail.com>

* Update goldilocks/quadratic_extension.go

Co-authored-by: Kevin Jue <kjue235@gmail.com>

* fix: resolve kevin's confusion

---------

Co-authored-by: Kevin Jue <kjue235@gmail.com>
This commit is contained in:
John Guibas
2023-07-24 16:08:17 -07:00
committed by GitHub
parent 103c7ca47d
commit b670530e7f
61 changed files with 3506 additions and 3211 deletions

362
goldilocks/base.go Normal file
View File

@@ -0,0 +1,362 @@
// This package implements efficient Golidlocks arithmetic operations within Gnark. We do not use
// the emulated field arithmetic API, because it is too slow for our purposes. Instead, we use
// an efficient reduction method that leverages the fact that the modulus is a simple
// linear combination of powers of two.
package goldilocks
// In general, methods whose name do not contain `NoReduce` can be used without any extra mental
// overhead. These methods act exactly as you would expect a normal field would operate.
//
// However, if you want to aggressively optimize the number of constraints in your circuit, it can
// be very beneficial to use the no reduction methods and keep track of the maximum number of bits
// your computation uses.
import (
"fmt"
"math/big"
"github.com/consensys/gnark-crypto/field/goldilocks"
"github.com/consensys/gnark/constraint/solver"
"github.com/consensys/gnark/frontend"
"github.com/consensys/gnark/std/math/bits"
"github.com/consensys/gnark/std/math/emulated"
)
// The multiplicative group generator of the field.
var MULTIPLICATIVE_GROUP_GENERATOR goldilocks.Element = goldilocks.NewElement(7)
// The two adicity of the field.
var TWO_ADICITY uint64 = 32
// The power of two generator of the field.
var POWER_OF_TWO_GENERATOR goldilocks.Element = goldilocks.NewElement(1753635133440165772)
// The modulus of the field.
var MODULUS *big.Int = emulated.Goldilocks{}.Modulus()
// The threshold maximum number of bits at which we must reduce the element.
var REDUCE_NB_BITS_THRESHOLD uint8 = 254 - 64
// The number of bits to use for range checks on inner products of field elements.
var RANGE_CHECK_NB_BITS int = 140
// Registers the hint functions with the solver.
func init() {
solver.RegisterHint(MulAddHint)
solver.RegisterHint(ReduceHint)
solver.RegisterHint(InverseHint)
}
// A type alias used to represent Goldilocks field elements.
type Variable struct {
Limb frontend.Variable
}
// Creates a new Goldilocks field element from an existing variable. Assumes that the element is
// already reduced.
func NewVariable(x frontend.Variable) Variable {
return Variable{Limb: x}
}
// The zero element in the Golidlocks field.
func Zero() Variable {
return NewVariable(0)
}
// The one element in the Goldilocks field.
func One() Variable {
return NewVariable(1)
}
// The negative one element in the Goldilocks field.
func NegOne() Variable {
return NewVariable(MODULUS.Uint64() - 1)
}
// The chip used for Goldilocks field operations.
type Chip struct {
api frontend.API
}
// Creates a new Goldilocks chip.
func NewChip(api frontend.API) *Chip {
return &Chip{api: api}
}
// Adds two field elements such that x + y = z within the Golidlocks field.
func (p *Chip) Add(a Variable, b Variable) Variable {
return p.MulAdd(a, NewVariable(1), b)
}
// Adds two field elements such that x + y = z within the Golidlocks field without reducing.
func (p *Chip) AddNoReduce(a Variable, b Variable) Variable {
return NewVariable(p.api.Add(a.Limb, b.Limb))
}
// Subtracts two field elements such that x + y = z within the Golidlocks field.
func (p *Chip) Sub(a Variable, b Variable) Variable {
return p.MulAdd(b, NewVariable(MODULUS.Uint64()-1), a)
}
// Subtracts two field elements such that x + y = z within the Golidlocks field without reducing.
func (p *Chip) SubNoReduce(a Variable, b Variable) Variable {
return NewVariable(p.api.Add(a.Limb, p.api.Mul(b.Limb, MODULUS.Uint64()-1)))
}
// Multiplies two field elements such that x * y = z within the Golidlocks field.
func (p *Chip) Mul(a Variable, b Variable) Variable {
return p.MulAdd(a, b, Zero())
}
// Multiplies two field elements such that x * y = z within the Golidlocks field without reducing.
func (p *Chip) MulNoReduce(a Variable, b Variable) Variable {
return NewVariable(p.api.Mul(a.Limb, b.Limb))
}
// Multiplies two field elements and adds a field element such that x * y + z = c within the
// Golidlocks field.
func (p *Chip) MulAdd(a Variable, b Variable, c Variable) Variable {
result, err := p.api.Compiler().NewHint(MulAddHint, 2, a.Limb, b.Limb, c.Limb)
if err != nil {
panic(err)
}
quotient := NewVariable(result[0])
remainder := NewVariable(result[1])
lhs := p.api.Mul(a.Limb, b.Limb)
lhs = p.api.Add(lhs, c.Limb)
rhs := p.api.Add(p.api.Mul(quotient.Limb, MODULUS), remainder.Limb)
p.api.AssertIsEqual(lhs, rhs)
p.RangeCheck(quotient)
p.RangeCheck(remainder)
return remainder
}
// Multiplies two field elements and adds a field element such that x * y + z = c within the
// Golidlocks field without reducing.
func (p *Chip) MulAddNoReduce(a Variable, b Variable, c Variable) Variable {
return p.AddNoReduce(p.MulNoReduce(a, b), c)
}
// The hint used to compute MulAdd.
func MulAddHint(_ *big.Int, inputs []*big.Int, results []*big.Int) error {
if len(inputs) != 3 {
panic("MulAddHint expects 3 input operands")
}
for _, operand := range inputs {
if operand.Cmp(MODULUS) >= 0 {
panic(fmt.Sprintf("%s is not in the field", operand.String()))
}
}
product := new(big.Int).Mul(inputs[0], inputs[1])
sum := new(big.Int).Add(product, inputs[2])
quotient := new(big.Int).Div(sum, MODULUS)
remainder := new(big.Int).Rem(sum, MODULUS)
results[0] = quotient
results[1] = remainder
return nil
}
// Reduces a field element x such that x % MODULUS = y.
func (p *Chip) Reduce(x Variable) Variable {
// Witness a `quotient` and `remainder` such that:
//
// MODULUS * quotient + remainder = x
//
// Must check that offset \in [0, MODULUS) and carry \in [0, 2^RANGE_CHECK_NB_BITS) to ensure
// that this computation does not overflow. We use 2^RANGE_CHECK_NB_BITS to reduce the cost of the range check
//
// In other words, we assume that we at most compute a a dot product with dimension at most RANGE_CHECK_NB_BITS - 128.
result, err := p.api.Compiler().NewHint(ReduceHint, 2, x.Limb)
if err != nil {
panic(err)
}
quotient := result[0]
rangeCheckNbBits := RANGE_CHECK_NB_BITS
p.api.ToBinary(quotient, rangeCheckNbBits)
remainder := NewVariable(result[1])
p.RangeCheck(remainder)
return remainder
}
// Reduces a field element x such that x % MODULUS = y.
func (p *Chip) ReduceWithMaxBits(x Variable, maxNbBits uint64) Variable {
// Witness a `quotient` and `remainder` such that:
//
// MODULUS * quotient + remainder = x
//
// Must check that remainder \in [0, MODULUS) and quotient \in [0, 2^maxNbBits) to ensure that this
// computation does not overflow.
result, err := p.api.Compiler().NewHint(ReduceHint, 2, x.Limb)
if err != nil {
panic(err)
}
quotient := result[0]
p.api.ToBinary(quotient, int(maxNbBits))
remainder := NewVariable(result[1])
p.RangeCheck(remainder)
return remainder
}
// The hint used to compute Reduce.
func ReduceHint(_ *big.Int, inputs []*big.Int, results []*big.Int) error {
if len(inputs) != 1 {
panic("ReduceHint expects 1 input operand")
}
input := inputs[0]
quotient := new(big.Int).Div(input, MODULUS)
remainder := new(big.Int).Rem(input, MODULUS)
results[0] = quotient
results[1] = remainder
return nil
}
// Computes the inverse of a field element x such that x * x^-1 = 1.
func (p *Chip) Inverse(x Variable) Variable {
result, err := p.api.Compiler().NewHint(InverseHint, 1, x.Limb)
if err != nil {
panic(err)
}
inverse := NewVariable(result[0])
product := p.Mul(inverse, x)
p.api.AssertIsEqual(product.Limb, frontend.Variable(1))
return inverse
}
// The hint used to compute Inverse.
func InverseHint(_ *big.Int, inputs []*big.Int, results []*big.Int) error {
if len(inputs) != 1 {
panic("InverseHint expects 1 input operand")
}
input := inputs[0]
if input.Cmp(MODULUS) == 0 || input.Cmp(MODULUS) == 1 {
panic("Input is not in the field")
}
inputGl := goldilocks.NewElement(input.Uint64())
resultGl := goldilocks.NewElement(0)
resultGl.Inverse(&inputGl)
result := big.NewInt(0)
results[0] = resultGl.BigInt(result)
return nil
}
// Computes a field element raised to some power.
func (p *Chip) Exp(x Variable, k *big.Int) Variable {
if k.IsUint64() && k.Uint64() == 0 {
return One()
}
e := k
if k.Sign() == -1 {
panic("Unsupported negative exponent. Need to implement inversion.")
}
z := x
for i := e.BitLen() - 2; i >= 0; i-- {
z = p.Mul(z, z)
if e.Bit(i) == 1 {
z = p.Mul(z, x)
}
}
return z
}
// Range checks a field element x to be less than the Golidlocks modulus 2 ^ 64 - 2 ^ 32 + 1.
func (p *Chip) RangeCheck(x Variable) {
// The Goldilocks' modulus is 2^64 - 2^32 + 1, which is:
//
// 1111111111111111111111111111111100000000000000000000000000000001
//
// in big endian binary. This function will first verify that x is at most 64 bits wide. Then it
// checks that if the bits[0:31] (in big-endian) are all 1, then bits[32:64] are all zero.
// First decompose x into 64 bits. The bits will be in little-endian order.
bits := bits.ToBinary(p.api, x.Limb, bits.WithNbDigits(64))
// Those bits should compose back to x.
reconstructedX := frontend.Variable(0)
c := uint64(1)
for i := 0; i < 64; i++ {
reconstructedX = p.api.Add(reconstructedX, p.api.Mul(bits[i], c))
c = c << 1
p.api.AssertIsBoolean(bits[i])
}
p.api.AssertIsEqual(x.Limb, reconstructedX)
mostSigBits32Sum := frontend.Variable(0)
for i := 32; i < 64; i++ {
mostSigBits32Sum = p.api.Add(mostSigBits32Sum, bits[i])
}
leastSigBits32Sum := frontend.Variable(0)
for i := 0; i < 32; i++ {
leastSigBits32Sum = p.api.Add(leastSigBits32Sum, bits[i])
}
// If mostSigBits32Sum < 32, then we know that:
//
// x < (2^63 + ... + 2^32 + 0 * 2^31 + ... + 0 * 2^0)
//
// which equals to 2^64 - 2^32. So in that case, we don't need to do any more checks. If
// mostSigBits32Sum == 32, then we need to check that x == 2^64 - 2^32 (max GL value).
shouldCheck := p.api.IsZero(p.api.Sub(mostSigBits32Sum, 32))
p.api.AssertIsEqual(
p.api.Select(
shouldCheck,
leastSigBits32Sum,
frontend.Variable(0),
),
frontend.Variable(0),
)
}
func (p *Chip) AssertIsEqual(x, y Variable) {
p.api.AssertIsEqual(x.Limb, y.Limb)
}
// Computes the n'th primitive root of unity for the Goldilocks field.
func PrimitiveRootOfUnity(nLog uint64) goldilocks.Element {
if nLog > TWO_ADICITY {
panic("nLog is greater than TWO_ADICITY")
}
res := goldilocks.NewElement(POWER_OF_TWO_GENERATOR.Uint64())
for i := 0; i < int(TWO_ADICITY-nLog); i++ {
res.Square(&res)
}
return res
}
func TwoAdicSubgroup(nLog uint64) []goldilocks.Element {
if nLog > TWO_ADICITY {
panic("nLog is greater than GOLDILOCKS_TWO_ADICITY")
}
var res []goldilocks.Element
rootOfUnity := PrimitiveRootOfUnity(nLog)
res = append(res, goldilocks.NewElement(1))
for i := 0; i < (1 << nLog); i++ {
lastElement := res[len(res)-1]
res = append(res, *lastElement.Mul(&lastElement, &rootOfUnity))
}
return res
}

73
goldilocks/base_test.go Normal file
View File

@@ -0,0 +1,73 @@
package goldilocks
import (
"math/big"
"testing"
"github.com/consensys/gnark-crypto/ecc"
"github.com/consensys/gnark/backend"
"github.com/consensys/gnark/frontend"
"github.com/consensys/gnark/test"
)
type TestGoldilocksRangeCheckCircuit struct {
X frontend.Variable
}
func (c *TestGoldilocksRangeCheckCircuit) Define(api frontend.API) error {
chip := NewChip(api)
chip.RangeCheck(NewVariable(c.X))
return nil
}
func TestGoldilocksRangeCheck(t *testing.T) {
assert := test.NewAssert(t)
var circuit, witness TestGoldilocksRangeCheckCircuit
witness.X = 1
assert.ProverSucceeded(&circuit, &witness, test.WithCurves(ecc.BN254), test.WithBackends(backend.GROTH16), test.NoSerialization())
witness.X = 0
assert.ProverSucceeded(&circuit, &witness, test.WithCurves(ecc.BN254), test.WithBackends(backend.GROTH16), test.NoSerialization())
witness.X = MODULUS
assert.ProverFailed(&circuit, &witness, test.WithCurves(ecc.BN254), test.WithBackends(backend.GROTH16), test.NoSerialization())
one := big.NewInt(1)
maxValidVal := new(big.Int).Sub(MODULUS, one)
witness.X = maxValidVal
assert.ProverSucceeded(&circuit, &witness, test.WithCurves(ecc.BN254), test.WithBackends(backend.GROTH16))
}
type TestGoldilocksMulAddCircuit struct {
X, Y, Z frontend.Variable
ExpectedResult frontend.Variable
}
func (c *TestGoldilocksMulAddCircuit) Define(api frontend.API) error {
chip := NewChip(api)
calculateValue := chip.MulAdd(NewVariable(c.X), NewVariable(c.Y), NewVariable(c.Z))
api.AssertIsEqual(calculateValue.Limb, c.ExpectedResult)
return nil
}
func TestGoldilocksMulAdd(t *testing.T) {
assert := test.NewAssert(t)
var circuit, witness TestGoldilocksMulAddCircuit
witness.X = 1
witness.Y = 2
witness.Z = 3
witness.ExpectedResult = 5
assert.ProverSucceeded(&circuit, &witness, test.WithCurves(ecc.BN254), test.WithBackends(backend.GROTH16), test.NoFuzzing())
bigOperand := new(big.Int).SetUint64(9223372036854775808)
expectedValue, _ := new(big.Int).SetString("18446744068340842500", 10)
witness.X = bigOperand
witness.Y = bigOperand
witness.Z = 3
witness.ExpectedResult = expectedValue
assert.ProverSucceeded(&circuit, &witness, test.WithCurves(ecc.BN254), test.WithBackends(backend.GROTH16), test.NoFuzzing())
}

View File

@@ -0,0 +1,234 @@
package goldilocks
import (
"math/bits"
"github.com/consensys/gnark/frontend"
)
const W uint64 = 7
const DTH_ROOT uint64 = 18446744069414584320
type QuadraticExtensionVariable [2]Variable
func NewQuadraticExtensionVariable(x Variable, y Variable) QuadraticExtensionVariable {
return QuadraticExtensionVariable{x, y}
}
func (p Variable) ToQuadraticExtension() QuadraticExtensionVariable {
return NewQuadraticExtensionVariable(p, Zero())
}
func ZeroExtension() QuadraticExtensionVariable {
return Zero().ToQuadraticExtension()
}
func OneExtension() QuadraticExtensionVariable {
return One().ToQuadraticExtension()
}
// Adds two quadratic extension variables in the Goldilocks field.
func (p *Chip) AddExtension(a, b QuadraticExtensionVariable) QuadraticExtensionVariable {
c0 := p.Add(a[0], b[0])
c1 := p.Add(a[1], b[1])
return NewQuadraticExtensionVariable(c0, c1)
}
// Adds two quadratic extension variables in the Goldilocks field without reducing.
func (p *Chip) AddExtensionNoReduce(a, b QuadraticExtensionVariable) QuadraticExtensionVariable {
c0 := p.AddNoReduce(a[0], b[0])
c1 := p.AddNoReduce(a[1], b[1])
return NewQuadraticExtensionVariable(c0, c1)
}
// Subtracts two quadratic extension variables in the Goldilocks field.
func (p *Chip) SubExtension(a, b QuadraticExtensionVariable) QuadraticExtensionVariable {
c0 := p.Sub(a[0], b[0])
c1 := p.Sub(a[1], b[1])
return NewQuadraticExtensionVariable(c0, c1)
}
// Subtracts two quadratic extension variables in the Goldilocks field without reducing.
func (p *Chip) SubExtensionNoReduce(a, b QuadraticExtensionVariable) QuadraticExtensionVariable {
c0 := p.SubNoReduce(a[0], b[0])
c1 := p.SubNoReduce(a[1], b[1])
return NewQuadraticExtensionVariable(c0, c1)
}
// Multiplies quadratic extension variable in the Goldilocks field.
func (p *Chip) MulExtension(a, b QuadraticExtensionVariable) QuadraticExtensionVariable {
product := p.MulExtensionNoReduce(a, b)
product[0] = p.Reduce(product[0])
product[1] = p.Reduce(product[1])
return product
}
// Multiplies quadratic extension variable in the Goldilocks field without reducing.
func (p *Chip) MulExtensionNoReduce(a, b QuadraticExtensionVariable) QuadraticExtensionVariable {
c0o0 := p.MulNoReduce(a[0], b[0])
c0o1 := p.MulNoReduce(p.MulNoReduce(NewVariable(7), a[1]), b[1])
c0 := p.AddNoReduce(c0o0, c0o1)
c1 := p.AddNoReduce(p.MulNoReduce(a[0], b[1]), p.MulNoReduce(a[1], b[0]))
return NewQuadraticExtensionVariable(c0, c1)
}
// Multiplies two operands a and b and adds to c in the Goldilocks extension field. a * b + c must
// be less than RANGE_CHECK_NB_BITS bits.
func (p *Chip) MulAddExtension(a, b, c QuadraticExtensionVariable) QuadraticExtensionVariable {
product := p.MulExtensionNoReduce(a, b)
sum := p.AddExtensionNoReduce(product, c)
sum[0] = p.Reduce(sum[0])
sum[1] = p.Reduce(sum[1])
return sum
}
func (p *Chip) MulAddExtensionNoReduce(a, b, c QuadraticExtensionVariable) QuadraticExtensionVariable {
product := p.MulExtensionNoReduce(a, b)
sum := p.AddExtensionNoReduce(product, c)
return sum
}
// Multiplies two operands a and b and subtracts to c in the Goldilocks extension field. a * b - c must
// be less than RANGE_CHECK_NB_BITS bits.
func (p *Chip) SubMulExtension(a, b, c QuadraticExtensionVariable) QuadraticExtensionVariable {
difference := p.SubExtensionNoReduce(a, b)
product := p.MulExtensionNoReduce(difference, c)
product[0] = p.Reduce(product[0])
product[1] = p.Reduce(product[1])
return product
}
// Multiplies quadratic extension variable in the Goldilocks field by a scalar.
func (p *Chip) ScalarMulExtension(
a QuadraticExtensionVariable,
b Variable,
) QuadraticExtensionVariable {
return NewQuadraticExtensionVariable(
p.Mul(a[0], b),
p.Mul(a[1], b),
)
}
// Computes an inner product over quadratic extension variable vectors in the Goldilocks field.
func (p *Chip) InnerProductExtension(
constant Variable,
startingAcc QuadraticExtensionVariable,
pairs [][2]QuadraticExtensionVariable,
) QuadraticExtensionVariable {
acc := startingAcc
for i := 0; i < len(pairs); i++ {
a := pairs[i][0]
b := pairs[i][1]
mul := p.ScalarMulExtension(a, constant)
acc = p.MulAddExtensionNoReduce(mul, b, acc)
}
return p.ReduceExtension(acc)
}
// Computes the inverse of a quadratic extension variable in the Goldilocks field.
func (p *Chip) InverseExtension(a QuadraticExtensionVariable) QuadraticExtensionVariable {
a0IsZero := p.api.IsZero(a[0].Limb)
a1IsZero := p.api.IsZero(a[1].Limb)
p.api.AssertIsEqual(p.api.Mul(a0IsZero, a1IsZero), frontend.Variable(0))
aPowRMinus1 := QuadraticExtensionVariable{
a[0],
p.Mul(a[1], NewVariable(DTH_ROOT)),
}
aPowR := p.MulExtension(aPowRMinus1, a)
return p.ScalarMulExtension(aPowRMinus1, p.Inverse(aPowR[0]))
}
// Divides two quadratic extension variables in the Goldilocks field.
func (p *Chip) DivExtension(a, b QuadraticExtensionVariable) QuadraticExtensionVariable {
return p.MulExtension(a, p.InverseExtension(b))
}
// Exponentiates a quadratic extension variable to some exponent in the Golidlocks field.
func (p *Chip) ExpExtension(
a QuadraticExtensionVariable,
exponent uint64,
) QuadraticExtensionVariable {
switch exponent {
case 0:
return OneExtension()
case 1:
return a
case 2:
return p.MulExtension(a, a)
default:
}
current := a
product := OneExtension()
for i := 0; i < bits.Len64(exponent); i++ {
if i != 0 {
current = p.MulExtension(current, current)
}
if (exponent >> i & 1) != 0 {
product = p.MulExtension(product, current)
}
}
return product
}
func (p *Chip) ReduceExtension(x QuadraticExtensionVariable) QuadraticExtensionVariable {
return NewQuadraticExtensionVariable(p.Reduce(x[0]), p.Reduce(x[1]))
}
// Reduces a list of extension field terms with a scalar power in the Goldilocks field.
func (p *Chip) ReduceWithPowers(
terms []QuadraticExtensionVariable,
scalar QuadraticExtensionVariable,
) QuadraticExtensionVariable {
sum := ZeroExtension()
for i := len(terms) - 1; i >= 0; i-- {
sum = p.AddExtensionNoReduce(
p.MulExtensionNoReduce(
sum,
scalar,
),
terms[i],
)
sum = p.ReduceExtension(sum)
}
return sum
}
// Outputs whether the quadratic extension variable is zero.
func (p *Chip) IsZero(x QuadraticExtensionVariable) frontend.Variable {
x0IsZero := p.api.IsZero(x[0].Limb)
x1IsZero := p.api.IsZero(x[1].Limb)
return p.api.Mul(x0IsZero, x1IsZero)
}
// Lookup is similar to select, but returns the first variable if the bit is zero and vice-versa.
func (p *Chip) Lookup(
b frontend.Variable,
x, y QuadraticExtensionVariable,
) QuadraticExtensionVariable {
c0 := p.api.Select(b, y[0].Limb, x[0].Limb)
c1 := p.api.Select(b, y[1].Limb, x[1].Limb)
return NewQuadraticExtensionVariable(NewVariable(c0), NewVariable(c1))
}
// Lookup2 is similar to select2, but returns the first variable if the bit is zero and vice-versa.
func (p *Chip) Lookup2(
b0 frontend.Variable,
b1 frontend.Variable,
qe0, qe1, qe2, qe3 QuadraticExtensionVariable,
) QuadraticExtensionVariable {
c0 := p.Lookup(b0, qe0, qe1)
c1 := p.Lookup(b0, qe2, qe3)
return p.Lookup(b1, c0, c1)
}
// Asserts that two quadratic extension variables are equal.
func (p *Chip) AssertIsEqualExtension(
a QuadraticExtensionVariable,
b QuadraticExtensionVariable,
) {
p.AssertIsEqual(a[0], b[0])
p.AssertIsEqual(a[1], b[1])
}

View File

@@ -0,0 +1,125 @@
package goldilocks
import "github.com/consensys/gnark-crypto/field/goldilocks"
const D = 2
type QuadraticExtensionAlgebraVariable = [D]QuadraticExtensionVariable
func NewQuadraticExtensionAlgebraVariable(
a QuadraticExtensionVariable,
b QuadraticExtensionVariable,
) QuadraticExtensionAlgebraVariable {
return QuadraticExtensionAlgebraVariable{a, b}
}
func (p QuadraticExtensionVariable) ToQuadraticExtensionAlgebra() QuadraticExtensionAlgebraVariable {
return [2]QuadraticExtensionVariable{p, ZeroExtension()}
}
func ZeroExtensionAlgebra() QuadraticExtensionAlgebraVariable {
return ZeroExtension().ToQuadraticExtensionAlgebra()
}
func OneExtensionAlgebra() QuadraticExtensionAlgebraVariable {
return OneExtension().ToQuadraticExtensionAlgebra()
}
func (p *Chip) AddExtensionAlgebra(
a QuadraticExtensionAlgebraVariable,
b QuadraticExtensionAlgebraVariable,
) QuadraticExtensionAlgebraVariable {
var sum QuadraticExtensionAlgebraVariable
for i := 0; i < D; i++ {
sum[i] = p.AddExtension(a[i], b[i])
}
return sum
}
func (p *Chip) SubExtensionAlgebra(
a QuadraticExtensionAlgebraVariable,
b QuadraticExtensionAlgebraVariable,
) QuadraticExtensionAlgebraVariable {
var diff QuadraticExtensionAlgebraVariable
for i := 0; i < D; i++ {
diff[i] = p.SubExtension(a[i], b[i])
}
return diff
}
func (p Chip) MulExtensionAlgebra(
a QuadraticExtensionAlgebraVariable,
b QuadraticExtensionAlgebraVariable,
) QuadraticExtensionAlgebraVariable {
var inner [D][]QuadraticExtensionAlgebraVariable
var innerW [D][]QuadraticExtensionAlgebraVariable
for i := 0; i < D; i++ {
for j := 0; j < D-i; j++ {
idx := (i + j) % D
inner[idx] = append(inner[idx], QuadraticExtensionAlgebraVariable{a[i], b[j]})
}
for j := D - i; j < D; j++ {
idx := (i + j) % D
innerW[idx] = append(innerW[idx], QuadraticExtensionAlgebraVariable{a[i], b[j]})
}
}
var product QuadraticExtensionAlgebraVariable
for i := 0; i < D; i++ {
acc := p.InnerProductExtension(NewVariable(W), ZeroExtension(), innerW[i])
product[i] = p.InnerProductExtension(One(), acc, inner[i])
}
return product
}
func (p *Chip) ScalarMulExtensionAlgebra(
a QuadraticExtensionVariable,
b QuadraticExtensionAlgebraVariable,
) QuadraticExtensionAlgebraVariable {
var product QuadraticExtensionAlgebraVariable
for i := 0; i < D; i++ {
product[i] = p.MulExtension(a, b[i])
}
return product
}
func (p *Chip) PartialInterpolateExtAlgebra(
domain []goldilocks.Element,
values []QuadraticExtensionAlgebraVariable,
barycentricWeights []goldilocks.Element,
point QuadraticExtensionAlgebraVariable,
initialEval QuadraticExtensionAlgebraVariable,
initialPartialProd QuadraticExtensionAlgebraVariable,
) (QuadraticExtensionAlgebraVariable, QuadraticExtensionAlgebraVariable) {
n := len(values)
if n == 0 {
panic("Cannot interpolate with no values")
}
if n != len(domain) {
panic("Domain and values must have the same length")
}
if n != len(barycentricWeights) {
panic("Domain and barycentric weights must have the same length")
}
newEval := initialEval
newPartialProd := initialPartialProd
for i := 0; i < n; i++ {
val := values[i]
x := domain[i]
xField := NewVariable(x)
xQE := xField.ToQuadraticExtension()
xQEAlgebra := xQE.ToQuadraticExtensionAlgebra()
weight := NewVariable(barycentricWeights[i].Uint64()).ToQuadraticExtension()
term := p.SubExtensionAlgebra(point, xQEAlgebra)
weightedVal := p.ScalarMulExtensionAlgebra(weight, val)
newEval = p.MulExtensionAlgebra(newEval, term)
tmp := p.MulExtensionAlgebra(weightedVal, newPartialProd)
newEval = p.AddExtensionAlgebra(newEval, tmp)
newPartialProd = p.MulExtensionAlgebra(newPartialProd, term)
}
return newEval, newPartialProd
}

View File

@@ -0,0 +1 @@
package goldilocks

View File

@@ -0,0 +1,94 @@
package goldilocks
import (
"testing"
"github.com/consensys/gnark-crypto/ecc"
"github.com/consensys/gnark/frontend"
"github.com/consensys/gnark/test"
)
type TestQuadraticExtensionMulCircuit struct {
Operand1 QuadraticExtensionVariable
Operand2 QuadraticExtensionVariable
ExpectedResult QuadraticExtensionVariable
}
func (c *TestQuadraticExtensionMulCircuit) Define(api frontend.API) error {
glApi := NewChip(api)
actualRes := glApi.MulExtension(c.Operand1, c.Operand2)
glApi.AssertIsEqual(actualRes[0], c.ExpectedResult[0])
glApi.AssertIsEqual(actualRes[1], c.ExpectedResult[1])
return nil
}
func TestQuadraticExtensionMul4(t *testing.T) {
assert := test.NewAssert(t)
operand1 := QuadraticExtensionVariable{
NewVariable("4994088319481652598"),
NewVariable("16489566008211790727"),
}
operand2 := QuadraticExtensionVariable{
NewVariable("3797605683985595697"),
NewVariable("13424401189265534004"),
}
expectedResult := QuadraticExtensionVariable{
NewVariable("15052319864161058789"),
NewVariable("16841416332519902625"),
}
circuit := TestQuadraticExtensionMulCircuit{
Operand1: operand1,
Operand2: operand2,
ExpectedResult: expectedResult,
}
witness := TestQuadraticExtensionMulCircuit{
Operand1: operand1,
Operand2: operand2,
ExpectedResult: expectedResult,
}
err := test.IsSolved(&circuit, &witness, ecc.BN254.ScalarField())
assert.NoError(err)
}
// Test for quadratic extension division
type TestQuadraticExtensionDivCircuit struct {
Operand1 QuadraticExtensionVariable
Operand2 QuadraticExtensionVariable
ExpectedResult QuadraticExtensionVariable
}
func (c *TestQuadraticExtensionDivCircuit) Define(api frontend.API) error {
glAPI := NewChip(api)
actualRes := glAPI.DivExtension(c.Operand1, c.Operand2)
glAPI.AssertIsEqual(actualRes[0], c.ExpectedResult[0])
glAPI.AssertIsEqual(actualRes[1], c.ExpectedResult[1])
return nil
}
func TestQuadraticExtensionDiv(t *testing.T) {
assert := test.NewAssert(t)
operand1 := QuadraticExtensionVariable{
NewVariable("4994088319481652598"),
NewVariable("16489566008211790727"),
}
operand2 := QuadraticExtensionVariable{
NewVariable("7166004739148609569"),
NewVariable("14655965871663555016"),
}
expectedResult := QuadraticExtensionVariable{
NewVariable("15052319864161058789"),
NewVariable("16841416332519902625"),
}
circuit := TestQuadraticExtensionDivCircuit{
Operand1: operand1,
Operand2: operand2,
ExpectedResult: expectedResult,
}
witness := TestQuadraticExtensionDivCircuit{
Operand1: operand1,
Operand2: operand2,
ExpectedResult: expectedResult,
}
err := test.IsSolved(&circuit, &witness, ecc.BN254.ScalarField())
assert.NoError(err)
}

45
goldilocks/utils.go Normal file
View File

@@ -0,0 +1,45 @@
package goldilocks
import (
"math/big"
"github.com/consensys/gnark/frontend"
)
func StrArrayToBigIntArray(input []string) []big.Int {
var output []big.Int
for i := 0; i < len(input); i++ {
a := new(big.Int)
a, _ = a.SetString(input[i], 10)
output = append(output, *a)
}
return output
}
func StrArrayToFrontendVariableArray(input []string) []frontend.Variable {
var output []frontend.Variable
for i := 0; i < len(input); i++ {
output = append(output, frontend.Variable(input[i]))
}
return output
}
func Uint64ArrayToVariableArray(input []uint64) []Variable {
var output []Variable
for i := 0; i < len(input); i++ {
output = append(output, NewVariable(input[i]))
}
return output
}
func Uint64ArrayToQuadraticExtension(input []uint64) QuadraticExtensionVariable {
return NewQuadraticExtensionVariable(NewVariable(input[0]), NewVariable(input[1]))
}
func Uint64ArrayToQuadraticExtensionArray(input [][]uint64) []QuadraticExtensionVariable {
var output []QuadraticExtensionVariable
for i := 0; i < len(input); i++ {
output = append(output, NewQuadraticExtensionVariable(NewVariable(input[i][0]), NewVariable(input[i][1])))
}
return output
}