Rearranged files (#17)

* removed unused file

* change field import

* change import of field package

* changed field import

* moved hash to poseidon and some changes to the field package

* changed file structure
This commit is contained in:
Kevin Jue
2023-05-19 19:49:14 -07:00
committed by GitHub
parent a415c95f6f
commit cf84b032e2
72 changed files with 2376 additions and 2228 deletions

View File

@@ -0,0 +1,571 @@
package fri
import (
"fmt"
"math"
"math/big"
"math/bits"
"github.com/consensys/gnark-crypto/field/goldilocks"
"github.com/consensys/gnark/frontend"
"github.com/succinctlabs/gnark-plonky2-verifier/field"
"github.com/succinctlabs/gnark-plonky2-verifier/poseidon"
"github.com/succinctlabs/gnark-plonky2-verifier/verifier/common"
)
type FriChip struct {
api frontend.API `gnark:"-"`
fieldAPI frontend.API `gnark:"-"`
qeAPI *field.QuadraticExtensionAPI `gnark:"-"`
hashAPI *poseidon.HashAPI `gnark:"-"`
poseidonChip *poseidon.PoseidonChip
friParams *common.FriParams `gnark:"-"`
}
func NewFriChip(
api frontend.API,
fieldAPI frontend.API,
qeAPI *field.QuadraticExtensionAPI,
hashAPI *poseidon.HashAPI,
poseidonChip *poseidon.PoseidonChip,
friParams *common.FriParams,
) *FriChip {
return &FriChip{
api: api,
fieldAPI: fieldAPI,
qeAPI: qeAPI,
hashAPI: hashAPI,
poseidonChip: poseidonChip,
friParams: friParams,
}
}
func (f *FriChip) assertLeadingZeros(powWitness field.F, friConfig common.FriConfig) {
// Asserts that powWitness'es big-endian bit representation has at least `leading_zeros` leading zeros.
// Note that this is assuming that the Goldilocks field is being used. Specfically that the
// field is 64 bits long
maxPowWitness := uint64(math.Pow(2, float64(64-friConfig.ProofOfWorkBits))) - 1
f.fieldAPI.AssertIsLessOrEqual(powWitness, field.NewFieldElement(maxPowWitness))
}
func (f *FriChip) fromOpeningsAndAlpha(openings *FriOpenings, alpha field.QuadraticExtension) []field.QuadraticExtension {
// One reduced opening for all openings evaluated at point Zeta.
// Another one for all openings evaluated at point Zeta * Omega (which is only PlonkZsNext polynomial)
reducedOpenings := make([]field.QuadraticExtension, 0, 2)
for _, batch := range openings.Batches {
reducedOpenings = append(reducedOpenings, f.qeAPI.ReduceWithPowers(batch.Values, alpha))
}
return reducedOpenings
}
func (f *FriChip) hashOrNoop(data []field.F) poseidon.Hash {
var elements poseidon.Hash
if len(data) <= 4 {
// Pad the data to have a size of 4
for i, inputElement := range data {
elements[i] = inputElement
}
for i := len(data); i < 4; i++ {
elements[i] = field.ZERO_F
}
return elements
} else {
hashOutput := f.poseidonChip.HashNToMNoPad(data, 4)
if len(hashOutput) != len(elements) {
panic("The length of hashOutput and elements is different")
}
for i, hashField := range hashOutput {
elements[i] = hashField
}
return elements
}
}
func (f *FriChip) verifyMerkleProofToCapWithCapIndex(leafData []field.F, leafIndexBits []frontend.Variable, capIndexBits []frontend.Variable, merkleCap common.MerkleCap, proof *common.MerkleProof) {
currentDigest := f.hashOrNoop(leafData)
fourZeros := [4]field.F{field.ZERO_F, field.ZERO_F, field.ZERO_F, field.ZERO_F}
for i, sibling := range proof.Siblings {
bit := leafIndexBits[i]
var leftSiblingState poseidon.PoseidonState
copy(leftSiblingState[0:4], sibling[0:4])
copy(leftSiblingState[4:8], currentDigest[0:4])
copy(leftSiblingState[8:12], fourZeros[0:4])
leftHash := f.poseidonChip.Poseidon(leftSiblingState)
var leftHashCompress poseidon.Hash
leftHashCompress[0] = leftHash[0]
leftHashCompress[1] = leftHash[1]
leftHashCompress[2] = leftHash[2]
leftHashCompress[3] = leftHash[3]
var rightSiblingState poseidon.PoseidonState
copy(rightSiblingState[0:4], currentDigest[0:4])
copy(rightSiblingState[4:8], sibling[0:4])
copy(rightSiblingState[8:12], fourZeros[0:4])
rightHash := f.poseidonChip.Poseidon(rightSiblingState)
var rightHashCompress poseidon.Hash
rightHashCompress[0] = rightHash[0]
rightHashCompress[1] = rightHash[1]
rightHashCompress[2] = rightHash[2]
rightHashCompress[3] = rightHash[3]
currentDigest = f.hashAPI.SelectHash(bit, leftHashCompress, rightHashCompress)
}
// We assume that the cap_height is 4. Create two levels of the Lookup2 circuit
if len(capIndexBits) != 4 || len(merkleCap) != 16 {
errorMsg, _ := fmt.Printf(
"capIndexBits length should be 4 and the merkleCap length should be 16. Actual values (capIndexBits: %d, merkleCap: %d)\n",
len(capIndexBits),
len(merkleCap),
)
panic(errorMsg)
}
const NUM_LEAF_LOOKUPS = 4
var leafLookups [NUM_LEAF_LOOKUPS]poseidon.Hash
// First create the "leaf" lookup2 circuits
// The will use the least significant bits of the capIndexBits array
for i := 0; i < NUM_LEAF_LOOKUPS; i++ {
leafLookups[i] = f.hashAPI.Lookup2Hash(
capIndexBits[0], capIndexBits[1],
merkleCap[i*NUM_LEAF_LOOKUPS], merkleCap[i*NUM_LEAF_LOOKUPS+1], merkleCap[i*NUM_LEAF_LOOKUPS+2], merkleCap[i*NUM_LEAF_LOOKUPS+3],
)
}
// Use the most 2 significant bits of the capIndexBits array for the "root" lookup
merkleCapEntry := f.hashAPI.Lookup2Hash(capIndexBits[2], capIndexBits[3], leafLookups[0], leafLookups[1], leafLookups[2], leafLookups[3])
f.hashAPI.AssertIsEqualHash(currentDigest, merkleCapEntry)
}
func (f *FriChip) verifyInitialProof(xIndexBits []frontend.Variable, proof *common.FriInitialTreeProof, initialMerkleCaps []common.MerkleCap, capIndexBits []frontend.Variable) {
if len(proof.EvalsProofs) != len(initialMerkleCaps) {
panic("length of eval proofs in fri proof should equal length of initial merkle caps")
}
for i := 0; i < len(initialMerkleCaps); i++ {
evals := proof.EvalsProofs[i].Elements
merkleProof := proof.EvalsProofs[i].MerkleProof
cap := initialMerkleCaps[i]
f.verifyMerkleProofToCapWithCapIndex(evals, xIndexBits, capIndexBits, cap, &merkleProof)
}
}
// / We decompose FRI query indices into bits without verifying that the decomposition given by
// / the prover is the canonical one. In particular, if `x_index < 2^field_bits - p`, then the
// / prover could supply the binary encoding of either `x_index` or `x_index + p`, since they are
// / congruent mod `p`. However, this only occurs with probability
// / p_ambiguous = (2^field_bits - p) / p
// / which is small for the field that we use in practice.
// /
// / In particular, the soundness error of one FRI query is roughly the codeword rate, which
// / is much larger than this ambiguous-element probability given any reasonable parameters.
// / Thus ambiguous elements contribute a negligible amount to soundness error.
// /
// / Here we compare the probabilities as a sanity check, to verify the claim above.
func (f *FriChip) assertNoncanonicalIndicesOK() {
numAmbiguousElems := uint64(math.MaxUint64) - goldilocks.Modulus().Uint64() + 1
queryError := f.friParams.Config.Rate()
pAmbiguous := float64(numAmbiguousElems) / float64(goldilocks.Modulus().Uint64())
// TODO: Check that pAmbiguous value is the same as the one in plonky2 verifier
if pAmbiguous >= queryError*1e-5 {
panic("A non-negligible portion of field elements are in the range that permits non-canonical encodings. Need to do more analysis or enforce canonical encodings.")
}
}
func (f *FriChip) expFromBitsConstBase(
base goldilocks.Element,
exponentBits []frontend.Variable,
) field.F {
product := field.ONE_F
for i, bit := range exponentBits {
pow := int64(1 << i)
// If the bit is on, we multiply product by base^pow.
// We can arithmetize this as:
// product *= 1 + bit (base^pow - 1)
// product = (base^pow - 1) product bit + product
basePow := goldilocks.NewElement(0)
basePow.Exp(base, big.NewInt(pow))
basePowElement := field.NewFieldElement(basePow.Uint64() - 1)
product = f.fieldAPI.Add(
f.fieldAPI.Mul(
basePowElement,
product,
bit,
),
product,
).(field.F)
}
return product
}
func (f *FriChip) calculateSubgroupX(
xIndexBits []frontend.Variable,
nLog uint64,
) field.F {
// Compute x from its index
// `subgroup_x` is `subgroup[x_index]`, i.e., the actual field element in the domain.
// TODO - Make these as global values
g := field.NewFieldElement(field.GOLDILOCKS_MULTIPLICATIVE_GROUP_GENERATOR.Uint64())
base := field.GoldilocksPrimitiveRootOfUnity(nLog)
// Create a reverse list of xIndexBits
xIndexBitsRev := make([]frontend.Variable, 0)
for i := len(xIndexBits) - 1; i >= 0; i-- {
xIndexBitsRev = append(xIndexBitsRev, xIndexBits[i])
}
product := f.expFromBitsConstBase(base, xIndexBitsRev)
return f.fieldAPI.Mul(g, product).(field.F)
}
func (f *FriChip) friCombineInitial(
instance FriInstanceInfo,
proof common.FriInitialTreeProof,
friAlpha field.QuadraticExtension,
subgroupX_QE field.QuadraticExtension,
precomputedReducedEval []field.QuadraticExtension,
) field.QuadraticExtension {
sum := f.qeAPI.ZERO_QE
if len(instance.Batches) != len(precomputedReducedEval) {
panic("len(openings) != len(precomputedReducedEval)")
}
for i := 0; i < len(instance.Batches); i++ {
batch := instance.Batches[i]
reducedOpenings := precomputedReducedEval[i]
point := batch.Point
evals := make([]field.QuadraticExtension, 0)
for _, polynomial := range batch.Polynomials {
evals = append(
evals,
field.QuadraticExtension{proof.EvalsProofs[polynomial.OracleIndex].Elements[polynomial.PolynomialInfo], field.ZERO_F},
)
}
reducedEvals := f.qeAPI.ReduceWithPowers(evals, friAlpha)
numerator := f.qeAPI.SubExtension(reducedEvals, reducedOpenings)
denominator := f.qeAPI.SubExtension(subgroupX_QE, point)
sum = f.qeAPI.MulExtension(f.qeAPI.ExpU64Extension(friAlpha, uint64(len(evals))), sum)
sum = f.qeAPI.AddExtension(
f.qeAPI.DivExtension(
numerator,
denominator,
),
sum,
)
}
return sum
}
func (f *FriChip) finalPolyEval(finalPoly common.PolynomialCoeffs, point field.QuadraticExtension) field.QuadraticExtension {
ret := f.qeAPI.ZERO_QE
for i := len(finalPoly.Coeffs) - 1; i >= 0; i-- {
ret = f.qeAPI.AddExtension(
f.qeAPI.MulExtension(
ret,
point,
),
finalPoly.Coeffs[i],
)
}
return ret
}
func (f *FriChip) interpolate(x field.QuadraticExtension, xPoints []field.QuadraticExtension, yPoints []field.QuadraticExtension, barycentricWeights []field.QuadraticExtension) field.QuadraticExtension {
if len(xPoints) != len(yPoints) || len(xPoints) != len(barycentricWeights) {
panic("length of xPoints, yPoints, and barycentricWeights are inconsistent")
}
lX := f.qeAPI.ONE_QE
for i := 0; i < len(xPoints); i++ {
lX = f.qeAPI.MulExtension(
lX,
f.qeAPI.SubExtension(
x,
xPoints[i],
),
)
}
sum := f.qeAPI.ZERO_QE
for i := 0; i < len(xPoints); i++ {
sum = f.qeAPI.AddExtension(
f.qeAPI.MulExtension(
f.qeAPI.DivExtension(
barycentricWeights[i],
f.qeAPI.SubExtension(
x,
xPoints[i],
),
),
yPoints[i],
),
sum,
)
}
interpolation := f.qeAPI.MulExtension(lX, sum)
returnField := interpolation
// Now check if x is already within the xPoints
for i := 0; i < len(xPoints); i++ {
returnField = f.qeAPI.Select(
f.qeAPI.IsZero(f.qeAPI.SubExtension(x, xPoints[i])),
yPoints[i],
returnField,
)
}
return returnField
}
func (f *FriChip) computeEvaluation(
x field.F,
xIndexWithinCosetBits []frontend.Variable,
arityBits uint64,
evals []field.QuadraticExtension,
beta field.QuadraticExtension,
) field.QuadraticExtension {
arity := 1 << arityBits
if (len(evals)) != arity {
panic("len(evals) ! arity")
}
if arityBits > 8 {
panic("currently assuming that arityBits is <= 8")
}
g := field.GoldilocksPrimitiveRootOfUnity(arityBits)
gInv := goldilocks.NewElement(0)
gInv.Exp(g, big.NewInt(int64(arity-1)))
// The evaluation vector needs to be reordered first. Permute the evals array such that each
// element's new index is the bit reverse of it's original index.
// TODO: Optimization - Since the size of the evals array should be constant (e.g. 2^arityBits),
// we can just hard code the permutation.
permutedEvals := make([]field.QuadraticExtension, len(evals))
for i := uint8(0); i < uint8(len(evals)); i++ {
newIndex := bits.Reverse8(i) >> arityBits
permutedEvals[newIndex] = evals[i]
}
// Want `g^(arity - rev_x_index_within_coset)` as in the out-of-circuit version. Compute it
// as `(g^-1)^rev_x_index_within_coset`.
revXIndexWithinCosetBits := make([]frontend.Variable, len(xIndexWithinCosetBits))
for i := 0; i < len(xIndexWithinCosetBits); i++ {
revXIndexWithinCosetBits[len(xIndexWithinCosetBits)-1-i] = xIndexWithinCosetBits[i]
}
start := f.expFromBitsConstBase(gInv, revXIndexWithinCosetBits)
cosetStart := f.fieldAPI.Mul(start, x).(field.F)
xPoints := make([]field.QuadraticExtension, len(evals))
yPoints := permutedEvals
// TODO: Make g_F a constant
g_F := f.qeAPI.FieldToQE(field.NewFieldElement(g.Uint64()))
xPoints[0] = f.qeAPI.FieldToQE(cosetStart)
for i := 1; i < len(evals); i++ {
xPoints[i] = f.qeAPI.MulExtension(xPoints[i-1], g_F)
}
// TODO: This is n^2. Is there a way to do this better?
// Compute the barycentric weights
barycentricWeights := make([]field.QuadraticExtension, len(xPoints))
for i := 0; i < len(xPoints); i++ {
barycentricWeights[i] = f.qeAPI.ONE_QE
for j := 0; j < len(xPoints); j++ {
if i != j {
barycentricWeights[i] = f.qeAPI.MulExtension(
f.qeAPI.SubExtension(xPoints[i], xPoints[j]),
barycentricWeights[i],
)
}
}
// Take the inverse of the barycentric weights
// TODO: Can provide a witness to this value
barycentricWeights[i] = f.qeAPI.InverseExtension(barycentricWeights[i])
}
return f.interpolate(beta, xPoints, yPoints, barycentricWeights)
}
func (f *FriChip) verifyQueryRound(
instance FriInstanceInfo,
challenges *common.FriChallenges,
precomputedReducedEval []field.QuadraticExtension,
initialMerkleCaps []common.MerkleCap,
proof *common.FriProof,
xIndex field.F,
n uint64,
nLog uint64,
roundProof *common.FriQueryRound,
) {
f.assertNoncanonicalIndicesOK()
xIndexBits := f.fieldAPI.ToBinary(xIndex, int(nLog))
capIndexBits := xIndexBits[len(xIndexBits)-int(f.friParams.Config.CapHeight):]
f.verifyInitialProof(xIndexBits, &roundProof.InitialTreesProof, initialMerkleCaps, capIndexBits)
subgroupX := f.calculateSubgroupX(
xIndexBits,
nLog,
)
subgroupX_QE := field.QuadraticExtension{subgroupX, field.ZERO_F}
oldEval := f.friCombineInitial(
instance,
roundProof.InitialTreesProof,
challenges.FriAlpha,
subgroupX_QE,
precomputedReducedEval,
)
for i, arityBits := range f.friParams.ReductionArityBits {
evals := roundProof.Steps[i].Evals
cosetIndexBits := xIndexBits[arityBits:]
xIndexWithinCosetBits := xIndexBits[:arityBits]
// Assumes that the arity bits will be 4. That means that the range of
// xIndexWithCoset is [0,2^4-1]. This is based on plonky2's circuit recursive
// config: https://github.com/mir-protocol/plonky2/blob/main/plonky2/src/plonk/circuit_data.rs#L63
// Will use a two levels tree of 4-selector gadgets.
if arityBits != 4 {
panic("assuming arity bits is 4")
}
const NUM_LEAF_LOOKUPS = 4
var leafLookups [NUM_LEAF_LOOKUPS]field.QuadraticExtension
// First create the "leaf" lookup2 circuits
// The will use the least significant bits of the xIndexWithCosetBits array
for i := 0; i < NUM_LEAF_LOOKUPS; i++ {
leafLookups[i] = f.qeAPI.Lookup2(
xIndexWithinCosetBits[0],
xIndexWithinCosetBits[1],
evals[i*NUM_LEAF_LOOKUPS],
evals[i*NUM_LEAF_LOOKUPS+1],
evals[i*NUM_LEAF_LOOKUPS+2],
evals[i*NUM_LEAF_LOOKUPS+3],
)
}
// Use the most 2 significant bits of the xIndexWithCosetBits array for the "root" lookup
newEval := f.qeAPI.Lookup2(
xIndexWithinCosetBits[2],
xIndexWithinCosetBits[3],
leafLookups[0],
leafLookups[1],
leafLookups[2],
leafLookups[3],
)
f.qeAPI.AssertIsEqual(newEval, oldEval)
oldEval = f.computeEvaluation(
subgroupX,
xIndexWithinCosetBits,
arityBits,
evals,
challenges.FriBetas[i],
)
// Convert evals (array of QE) to fields by taking their 0th degree coefficients
fieldEvals := make([]field.F, 0, 2*len(evals))
for j := 0; j < len(evals); j++ {
fieldEvals = append(fieldEvals, evals[j][0])
fieldEvals = append(fieldEvals, evals[j][1])
}
f.verifyMerkleProofToCapWithCapIndex(
fieldEvals,
cosetIndexBits,
capIndexBits,
proof.CommitPhaseMerkleCaps[i],
&roundProof.Steps[i].MerkleProof,
)
// Update the point x to x^arity.
for j := uint64(0); j < arityBits; j++ {
subgroupX = f.fieldAPI.Mul(subgroupX, subgroupX).(field.F)
}
xIndexBits = cosetIndexBits
}
subgroupX_QE = f.qeAPI.FieldToQE(subgroupX)
finalPolyEval := f.finalPolyEval(proof.FinalPoly, subgroupX_QE)
f.qeAPI.AssertIsEqual(oldEval, finalPolyEval)
}
func (f *FriChip) VerifyFriProof(
instance FriInstanceInfo,
openings FriOpenings,
friChallenges *common.FriChallenges,
initialMerkleCaps []common.MerkleCap,
friProof *common.FriProof,
) {
// TODO: Check fri config
/* if let Some(max_arity_bits) = params.max_arity_bits() {
self.check_recursion_config::<C>(max_arity_bits);
}
debug_assert_eq!(
params.final_poly_len(),
proof.final_poly.len(),
"Final polynomial has wrong degree."
); */
// Check POW
f.assertLeadingZeros(friChallenges.FriPowResponse, f.friParams.Config)
precomputedReducedEvals := f.fromOpeningsAndAlpha(&openings, friChallenges.FriAlpha)
// Size of the LDE domain.
nLog := f.friParams.DegreeBits + f.friParams.Config.RateBits
n := uint64(math.Pow(2, float64(nLog)))
if len(friChallenges.FriQueryIndices) != len(friProof.QueryRoundProofs) {
panic(fmt.Sprintf(
"Number of query indices (%d) should equal number of query round proofs (%d)",
len(friChallenges.FriQueryIndices),
len(friProof.QueryRoundProofs),
))
}
for idx, xIndex := range friChallenges.FriQueryIndices {
roundProof := friProof.QueryRoundProofs[idx]
f.verifyQueryRound(
instance,
friChallenges,
precomputedReducedEvals,
initialMerkleCaps,
friProof,
xIndex,
n,
nLog,
&roundProof,
)
}
}

View File

@@ -0,0 +1,188 @@
package fri_test
import (
"testing"
"github.com/consensys/gnark/frontend"
"github.com/consensys/gnark/test"
"github.com/succinctlabs/gnark-plonky2-verifier/field"
"github.com/succinctlabs/gnark-plonky2-verifier/poseidon"
"github.com/succinctlabs/gnark-plonky2-verifier/verifier/common"
"github.com/succinctlabs/gnark-plonky2-verifier/verifier/internal/fri"
"github.com/succinctlabs/gnark-plonky2-verifier/verifier/utils"
)
type TestFriCircuit struct {
proofWithPIsFilename string `gnark:"-"`
commonCircuitDataFilename string `gnark:"-"`
verifierOnlyCircuitDataFilename string `gnark:"-"`
plonkZeta field.QuadraticExtension
friAlpha field.QuadraticExtension
friBetas []field.QuadraticExtension
friPOWResponse field.F
friQueryIndices []field.F
}
func (circuit *TestFriCircuit) Define(api frontend.API) error {
proofWithPis := utils.DeserializeProofWithPublicInputs(circuit.proofWithPIsFilename)
commonCircuitData := utils.DeserializeCommonCircuitData(circuit.commonCircuitDataFilename)
verifierOnlyCircuitData := utils.DeserializeVerifierOnlyCircuitData(circuit.verifierOnlyCircuitDataFilename)
fieldAPI := field.NewFieldAPI(api)
qeAPI := field.NewQuadraticExtensionAPI(fieldAPI, commonCircuitData.DegreeBits)
hashAPI := poseidon.NewHashAPI(fieldAPI)
poseidonChip := poseidon.NewPoseidonChip(api, fieldAPI, qeAPI)
friChip := fri.NewFriChip(api, fieldAPI, qeAPI, hashAPI, poseidonChip, &commonCircuitData.FriParams)
friChallenges := common.FriChallenges{
FriAlpha: circuit.friAlpha,
FriBetas: circuit.friBetas,
FriPowResponse: circuit.friPOWResponse,
FriQueryIndices: circuit.friQueryIndices,
}
initialMerkleCaps := []common.MerkleCap{
verifierOnlyCircuitData.ConstantSigmasCap,
proofWithPis.Proof.WiresCap,
proofWithPis.Proof.PlonkZsPartialProductsCap,
proofWithPis.Proof.QuotientPolysCap,
}
friChip.VerifyFriProof(
fri.GetFriInstance(&commonCircuitData, qeAPI, circuit.plonkZeta, commonCircuitData.DegreeBits),
fri.ToFriOpenings(proofWithPis.Proof.Openings),
&friChallenges,
initialMerkleCaps,
&proofWithPis.Proof.OpeningProof,
)
return nil
}
func TestFibonacciFriProof(t *testing.T) {
assert := test.NewAssert(t)
testCase := func() {
circuit := TestFriCircuit{
proofWithPIsFilename: "./data/fibonacci/proof_with_public_inputs.json",
commonCircuitDataFilename: "./data/fibonacci/common_circuit_data.json",
verifierOnlyCircuitDataFilename: "./data/fibonacci/verifier_only_circuit_data.json",
plonkZeta: field.QuadraticExtension{
field.NewFieldElementFromString("14887793628029982930"),
field.NewFieldElementFromString("1136137158284059037"),
},
friAlpha: field.QuadraticExtension{
field.NewFieldElementFromString("14641715242626918707"),
field.NewFieldElementFromString("10574243340537902930"),
},
friBetas: []field.QuadraticExtension{},
friPOWResponse: field.NewFieldElement(82451580476419),
friQueryIndices: []field.F{
field.NewFieldElement(6790812084677375942),
field.NewFieldElement(12394212020331474798),
field.NewFieldElement(16457600747000998582),
field.NewFieldElement(1543271328932331916),
field.NewFieldElement(12115726870906958644),
field.NewFieldElement(6775897107605342797),
field.NewFieldElement(15989401564746021030),
field.NewFieldElement(10691676456016926845),
field.NewFieldElement(1632499470630032007),
field.NewFieldElement(1317292355445098328),
field.NewFieldElement(18391440812534384252),
field.NewFieldElement(17321705613231354333),
field.NewFieldElement(6176487551308859603),
field.NewFieldElement(7119835651572002873),
field.NewFieldElement(3903019169623116693),
field.NewFieldElement(4886491111111487546),
field.NewFieldElement(4087641893164620518),
field.NewFieldElement(13801643080324181364),
field.NewFieldElement(16993775312274189321),
field.NewFieldElement(9268202926222765679),
field.NewFieldElement(10683001302406181735),
field.NewFieldElement(13359465725531647963),
field.NewFieldElement(4523327590105620849),
field.NewFieldElement(4883588003760409588),
field.NewFieldElement(187699146998097671),
field.NewFieldElement(14489263557623716717),
field.NewFieldElement(11748359318238148146),
field.NewFieldElement(13636347200053048758),
},
}
witness := TestFriCircuit{}
err := test.IsSolved(&circuit, &witness, field.TEST_CURVE.ScalarField())
assert.NoError(err)
}
testCase()
}
func TestDummyFriProof(t *testing.T) {
assert := test.NewAssert(t)
testCase := func() {
circuit := TestFriCircuit{
proofWithPIsFilename: "./data/dummy_2^14_gates/proof_with_public_inputs.json",
commonCircuitDataFilename: "./data/dummy_2^14_gates/common_circuit_data.json",
verifierOnlyCircuitDataFilename: "./data/dummy_2^14_gates/verifier_only_circuit_data.json",
plonkZeta: field.QuadraticExtension{
field.NewFieldElementFromString("17377750363769967882"),
field.NewFieldElementFromString("11921191651424768462"),
},
friAlpha: field.QuadraticExtension{
field.NewFieldElementFromString("16721004555774385479"),
field.NewFieldElementFromString("10688151135543754663"),
},
friBetas: []field.QuadraticExtension{
{
field.NewFieldElementFromString("3312441922957827805"),
field.NewFieldElementFromString("15128092514958289671"),
},
{
field.NewFieldElementFromString("13630530769060141802"),
field.NewFieldElementFromString("14559883974933163008"),
},
{
field.NewFieldElementFromString("16146508250083930687"),
field.NewFieldElementFromString("5176346568444408396"),
},
},
friPOWResponse: field.NewFieldElement(4389),
friQueryIndices: []field.F{
field.NewFieldElementFromString("16334967868590615051"),
field.NewFieldElementFromString("2911473540496037915"),
field.NewFieldElementFromString("14887216056886344225"),
field.NewFieldElementFromString("7808811227805914295"),
field.NewFieldElementFromString("2018594961417375749"),
field.NewFieldElementFromString("3733368398777208435"),
field.NewFieldElementFromString("2623035669037055104"),
field.NewFieldElementFromString("299243030573481514"),
field.NewFieldElementFromString("7189789717962704433"),
field.NewFieldElementFromString("14566344026886816268"),
field.NewFieldElementFromString("12555390069003437453"),
field.NewFieldElementFromString("17225508403199418233"),
field.NewFieldElementFromString("5088797913879903292"),
field.NewFieldElementFromString("9715691392773433023"),
field.NewFieldElementFromString("7565836764713256165"),
field.NewFieldElementFromString("1500143546029322929"),
field.NewFieldElementFromString("1245802417104422080"),
field.NewFieldElementFromString("6831959786661245110"),
field.NewFieldElementFromString("17271054758535453780"),
field.NewFieldElementFromString("6225460404576395409"),
field.NewFieldElementFromString("15932661092896277351"),
field.NewFieldElementFromString("12452534049198240575"),
field.NewFieldElementFromString("4225199666055520177"),
field.NewFieldElementFromString("13235091290587791090"),
field.NewFieldElementFromString("2562357622728700774"),
field.NewFieldElementFromString("17676678042980201498"),
field.NewFieldElementFromString("5837067135702409874"),
field.NewFieldElementFromString("11238419549114325157"),
},
}
witness := TestFriCircuit{}
err := test.IsSolved(&circuit, &witness, field.TEST_CURVE.ScalarField())
assert.NoError(err)
}
testCase()
}

View File

@@ -0,0 +1,199 @@
package fri
import (
"github.com/succinctlabs/gnark-plonky2-verifier/field"
"github.com/succinctlabs/gnark-plonky2-verifier/verifier/common"
)
type FriOpeningBatch struct {
Values []field.QuadraticExtension
}
type FriOpenings struct {
Batches []FriOpeningBatch
}
func ToFriOpenings(c common.OpeningSet) FriOpenings {
values := c.Constants // num_constants + 1
values = append(values, c.PlonkSigmas...) // num_routed_wires
values = append(values, c.Wires...) // num_wires
values = append(values, c.PlonkZs...) // num_challenges
values = append(values, c.PartialProducts...) // num_challenges * num_partial_products
values = append(values, c.QuotientPolys...) // num_challenges * quotient_degree_factor
zetaBatch := FriOpeningBatch{Values: values}
zetaNextBatch := FriOpeningBatch{Values: c.PlonkZsNext}
return FriOpenings{Batches: []FriOpeningBatch{zetaBatch, zetaNextBatch}}
}
type FriPolynomialInfo struct {
OracleIndex uint64
PolynomialInfo uint64
}
type FriOracleInfo struct {
NumPolys uint64
Blinding bool
}
type FriBatchInfo struct {
Point field.QuadraticExtension
Polynomials []FriPolynomialInfo
}
type FriInstanceInfo struct {
Oracles []FriOracleInfo
Batches []FriBatchInfo
}
type PlonkOracle struct {
index uint64
blinding bool
}
var CONSTANTS_SIGMAS = PlonkOracle{
index: 0,
blinding: false,
}
var WIRES = PlonkOracle{
index: 1,
blinding: true,
}
var ZS_PARTIAL_PRODUCTS = PlonkOracle{
index: 2,
blinding: true,
}
var QUOTIENT = PlonkOracle{
index: 3,
blinding: true,
}
func polynomialInfoFromRange(c *common.CommonCircuitData, oracleIdx uint64, startPolyIdx uint64, endPolyIdx uint64) []FriPolynomialInfo {
returnArr := make([]FriPolynomialInfo, 0)
for i := startPolyIdx; i < endPolyIdx; i++ {
returnArr = append(returnArr,
FriPolynomialInfo{
OracleIndex: oracleIdx,
PolynomialInfo: i,
})
}
return returnArr
}
// Range of the sigma polynomials in the `constants_sigmas_commitment`.
func sigmasRange(c *common.CommonCircuitData) []uint64 {
returnArr := make([]uint64, 0)
for i := c.NumConstants; i <= c.NumConstants+c.Config.NumRoutedWires; i++ {
returnArr = append(returnArr, i)
}
return returnArr
}
func numPreprocessedPolys(c *common.CommonCircuitData) uint64 {
sigmasRange := sigmasRange(c)
return sigmasRange[len(sigmasRange)-1]
}
func numZSPartialProductsPolys(c *common.CommonCircuitData) uint64 {
return c.Config.NumChallenges * (1 + c.NumPartialProducts)
}
func numQuotientPolys(c *common.CommonCircuitData) uint64 {
return c.Config.NumChallenges * c.QuotientDegreeFactor
}
func friPreprocessedPolys(c *common.CommonCircuitData) []FriPolynomialInfo {
return polynomialInfoFromRange(
c,
CONSTANTS_SIGMAS.index,
0,
numPreprocessedPolys(c),
)
}
func friWirePolys(c *common.CommonCircuitData) []FriPolynomialInfo {
numWirePolys := c.Config.NumWires
return polynomialInfoFromRange(c, WIRES.index, 0, numWirePolys)
}
func friZSPartialProductsPolys(c *common.CommonCircuitData) []FriPolynomialInfo {
return polynomialInfoFromRange(
c,
ZS_PARTIAL_PRODUCTS.index,
0,
numZSPartialProductsPolys(c),
)
}
func friQuotientPolys(c *common.CommonCircuitData) []FriPolynomialInfo {
return polynomialInfoFromRange(
c,
QUOTIENT.index,
0,
numQuotientPolys(c),
)
}
func friZSPolys(c *common.CommonCircuitData) []FriPolynomialInfo {
return polynomialInfoFromRange(
c,
ZS_PARTIAL_PRODUCTS.index,
0,
c.Config.NumChallenges,
)
}
func friOracles(c *common.CommonCircuitData) []FriOracleInfo {
return []FriOracleInfo{
{
NumPolys: numPreprocessedPolys(c),
Blinding: CONSTANTS_SIGMAS.blinding,
},
{
NumPolys: c.Config.NumWires,
Blinding: WIRES.blinding,
},
{
NumPolys: numZSPartialProductsPolys(c),
Blinding: ZS_PARTIAL_PRODUCTS.blinding,
},
{
NumPolys: numQuotientPolys(c),
Blinding: QUOTIENT.blinding,
},
}
}
func friAllPolys(c *common.CommonCircuitData) []FriPolynomialInfo {
returnArr := make([]FriPolynomialInfo, 0)
returnArr = append(returnArr, friPreprocessedPolys(c)...)
returnArr = append(returnArr, friWirePolys(c)...)
returnArr = append(returnArr, friZSPartialProductsPolys(c)...)
returnArr = append(returnArr, friQuotientPolys(c)...)
return returnArr
}
func GetFriInstance(c *common.CommonCircuitData, qeAPI *field.QuadraticExtensionAPI, zeta field.QuadraticExtension, degreeBits uint64) FriInstanceInfo {
zetaBatch := FriBatchInfo{
Point: zeta,
Polynomials: friAllPolys(c),
}
g := field.GoldilocksPrimitiveRootOfUnity(degreeBits)
zetaNext := qeAPI.MulExtension(qeAPI.FieldToQE(field.NewFieldElement(g.Uint64())), zeta)
zetaNextBath := FriBatchInfo{
Point: zetaNext,
Polynomials: friZSPolys(c),
}
return FriInstanceInfo{
Oracles: friOracles(c),
Batches: []FriBatchInfo{zetaBatch, zetaNextBath},
}
}