package plonky2_verifier import ( "fmt" . "gnark-plonky2-verifier/field" "github.com/consensys/gnark-crypto/field/goldilocks" ) type CosetInterpolationGate struct { subgroupBits uint64 degree uint64 barycentricWeights []goldilocks.Element } func NewCosetInterpolationGate(subgroupBits uint64, degree uint64, barycentricWeights []goldilocks.Element) *CosetInterpolationGate { return &CosetInterpolationGate{ subgroupBits: subgroupBits, degree: degree, barycentricWeights: barycentricWeights, } } func (g *CosetInterpolationGate) Id() string { return fmt.Sprintf( "CosetInterpolationGate { subgroup_bits: %d, degree: %d, barycentric_weights: %s }", g.subgroupBits, g.degree, fmt.Sprint(g.barycentricWeights), ) } func (g *CosetInterpolationGate) numPoints() uint64 { return 1 << g.subgroupBits } // Wire index of the coset shift. func (g *CosetInterpolationGate) wireShift() uint64 { return 0 } func (g *CosetInterpolationGate) startValues() uint64 { return 1 } // Wire indices of the `i`th interpolant value. func (g *CosetInterpolationGate) wiresValue(i uint64) Range { if i >= g.numPoints() { panic("Invalid point index") } start := g.startValues() + i*D return Range{start, start + D} } func (g *CosetInterpolationGate) startEvaluationPoint() uint64 { return g.startValues() + g.numPoints()*D } // Wire indices of the point to evaluate the interpolant at. func (g *CosetInterpolationGate) wiresEvaluationPoint() Range { start := g.startEvaluationPoint() return Range{start, start + D} } func (g *CosetInterpolationGate) startEvaluationValue() uint64 { return g.startEvaluationPoint() + D } // Wire indices of the interpolated value. func (g *CosetInterpolationGate) wiresEvaluationValue() Range { start := g.startEvaluationValue() return Range{start, start + D} } func (g *CosetInterpolationGate) startIntermediates() uint64 { return g.startEvaluationValue() + D } func (g *CosetInterpolationGate) numIntermediates() uint64 { return (g.numPoints() - 2) / (g.degree - 1) } // The wires corresponding to the i'th intermediate evaluation. func (g *CosetInterpolationGate) wiresIntermediateEval(i uint64) Range { if i >= g.numIntermediates() { panic("Invalid intermediate index") } start := g.startIntermediates() + D*i return Range{start, start + D} } // The wires corresponding to the i'th intermediate product. func (g *CosetInterpolationGate) wiresIntermediateProd(i uint64) Range { if i >= g.numIntermediates() { panic("Invalid intermediate index") } start := g.startIntermediates() + D*(g.numIntermediates()+i) return Range{start, start + D} } // Wire indices of the shifted point to evaluate the interpolant at. func (g *CosetInterpolationGate) wiresShiftedEvaluationPoint() Range { start := g.startIntermediates() + D*2*g.numIntermediates() return Range{start, start + D} } func (g *CosetInterpolationGate) EvalUnfiltered(p *PlonkChip, vars EvaluationVars) []QuadraticExtension { constraints := []QuadraticExtension{} shift := vars.localWires[g.wireShift()] evaluationPoint := vars.GetLocalExtAlgebra(g.wiresEvaluationPoint()) shiftedEvaluationPoint := vars.GetLocalExtAlgebra(g.wiresShiftedEvaluationPoint()) negShift := p.qeAPI.ScalarMulExtension(shift, NEG_ONE_F) tmp := p.qeAPI.ScalarMulExtensionAlgebra(negShift, shiftedEvaluationPoint) tmp = p.qeAPI.AddExtensionAlgebra(tmp, evaluationPoint) for i := 0; i < D; i++ { constraints = append(constraints, tmp[i]) } domain := TwoAdicSubgroup(g.subgroupBits) values := []QEAlgebra{} for i := uint64(0); i < g.numPoints(); i++ { values = append(values, vars.GetLocalExtAlgebra(g.wiresValue(i))) } weights := g.barycentricWeights initialEval := p.qeAPI.ZERO_QE_ALGEBRA initialProd := QEAlgebra{p.qeAPI.ONE_QE, p.qeAPI.ZERO_QE} computedEval, computedProd := p.qeAPI.PartialInterpolateExtAlgebra( domain[:g.degree], values[:g.degree], weights[:g.degree], shiftedEvaluationPoint, initialEval, initialProd, ) for i := uint64(0); i < g.numIntermediates(); i++ { intermediateEval := vars.GetLocalExtAlgebra(g.wiresIntermediateEval(i)) intermediateProd := vars.GetLocalExtAlgebra(g.wiresIntermediateProd(i)) evalDiff := p.qeAPI.SubExtensionAlgebra(intermediateEval, computedEval) for j := 0; j < D; j++ { constraints = append(constraints, evalDiff[j]) } prodDiff := p.qeAPI.SubExtensionAlgebra(intermediateProd, computedProd) for j := 0; j < D; j++ { constraints = append(constraints, prodDiff[j]) } startIndex := 1 + (g.degree-1)*(i+1) endIndex := startIndex + g.degree - 1 computedEval, computedProd = p.qeAPI.PartialInterpolateExtAlgebra( domain[startIndex:endIndex], values[startIndex:endIndex], weights[startIndex:endIndex], shiftedEvaluationPoint, intermediateEval, intermediateProd, ) } evaluationValue := vars.GetLocalExtAlgebra(g.wiresEvaluationValue()) evalDiff := p.qeAPI.SubExtensionAlgebra(evaluationValue, computedEval) for j := 0; j < D; j++ { constraints = append(constraints, evalDiff[j]) } return constraints }