Keridise. Auditing Report

Hardening Blockchain Security with Formal Methods

Veridise Inc.
January 10, 2024

» Prepared For:

Succinct
https://succinct.xyz

» Prepared By:

Benjamin Sepanski

Ian Neal

Sorawee Porncharoenwase

Tim Hoffman
Kostas Ferles

» Contact Us: contact@veridise.com
» Version History:

Jan. 10, 2024 Vi1
Nov. 30, 2023 Initial Draft

© 2023 Veridise Inc. All Rights Reserved.

https://succinct.xyz
contact@veridise.com

Contents

Contents iii
1 Executive Summary 1
2 Project Dashboard 3
3 Audit Goals and Scope 5
31 AuditGoals. e 5
3.2 Audit Methodology & Scope o oo 5
3.3 Classification of Vulnerabilities 6

4 Vulnerability Report 9
41 Detailed DescriptionofIssues 10
411 V-SCT-VUL-001: inverse missing range check 10

4.1.2 V-SCT-VUL-002: Unconstrained variable in Reduce() 12

4.1.3 V-SCT-VUL-003: Unconstrained variable in ReduceWithMaxBits() 14

414 V-SCT-VUL-004: MulAdd() may mutate arguments 15

41.5 V-SCT-VUL-005: Missing range-check on EvalProofs 17

41.6 V-SCT-VUL-006: Contracts: funds may be locked when feeVault is disabled 18

417 V-SCT-VUL-007: FRI Parameter Ignored During Loading 19

41.8 V-SCT-VUL-008: interpolate() over-constrained 20

419 V-SCT-VUL-009: ArityBits = 8 will provoke errors 21

4110 V-SCT-VUL-010: alpha value overwrittento1. 22

4111 V-SCT-VUL-011: Bitpacking operation may lead to overlap 23

4112 V-SCT-VUL-012: evalL0O overconstrained 25

4113 V-SCT-VUL-013: Salted evaluation not considered 26

4114 V-SCT-VUL-014: Index calculation differs from reference implementation 28

4115 V-SCT-VUL-015: Contracts: _callbackGasLimitis unused 29

4116 V-SCT-VUL-016: 1added to TwoAdicSubgroup output twice 30

4117 V-SCT-VUL-017: Missed opportunities to use appropriate abstractions . 31

41.18 V-SCT-VUL-018: Unused functions/variables 33

4119 V-SCT-VUL-019: Bit reversal incorrect for ArityBits =4 34

4.1.20 V-SCT-VUL-020: clearBuffer doesn’t clear the buffer 35

4.1.21 V-SCT-VUL-021: Possible leakage of randomness 36

4.1.22 V-SCT-VUL-022: Unused challenger parameter due to relocated logic . . 37

41.23 V-SCT-VUL-023: Errors in gate Id functions 38

4.1.24 V-SCT-VUL-024: Use of incorrectconstant 39

4.1.25 V-SCT-VUL-025: Missing degree check for CosetInterpolationGate . . . 40

4.1.26 V-SCT-VUL-026: Contracts: CentralizationRisk 41

4.1.27 V-SCT-VUL-027: Contracts: All _callbackAddresses permitted 42

4.1.28 V-SCT-VUL-028: Replace GoldilocksHashOut size with named constant 43

4.1.29 V-SCT-VUL-029: Type error in bn254’s HashOrNoop() 44

41.30 V-SCT-VUL-030: Non-std range-checkused 45

4.1.31 V-SCT-VUL-031: Various out-of-date comments and documentation. . . 46

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

4.1.32
4.1.33
4.1.34
4.1.35
4.1.36
4.1.37
4.1.38
4.1.39

V-SCT-VUL-032: Typosincode
V-SCT-VUL-033: Ignored gate parameters
V-SCT-VUL-034: Hard-coded constantsincode
V-SCT-VUL-035: No assertion that gnark is using BN254
V-SCT-VUL-036: Inaccurate bounds-check on numConsts
V-SCT-VUL-037: Sub-optimal sub-expression in random access gate . .
V-SCT-VUL-038: Contracts: Code Recommendations
V-SCT-VUL-039: Contracts: Possible Wasted Gas

5 Fuzz Testing
51 Methodology
52 PropertiesFuzzed o
5.3 Detailed Description of Fuzzed Specifications

5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7
5.3.8
5.3.9
5.3.10
5.3.11
5.3.12
5.3.13
5.3.14
5.3.15
5.3.16
5.3.17
5.3.18
5.3.19
5.3.20
5.3.21

V-SCT-SPEC-001: Spec:base —Add
V-SCT-SPEC-002: Spec:base —Exp
V-SCT-SPEC-003: Spec: base —Inverse
V-SCT-SPEC-004: Spec:base —Mul
V-SCT-SPEC-005: Spec: base —MulAdd
V-SCT-SPEC-006: Spec: base — RangeCheck
V-SCT-SPEC-007: Spec: base —Reduce
V-SCT-SPEC-008: Spec: poseidon —bn254
V-SCT-SPEC-009: Spec: poseidon — goldilocks
V-SCT-SPEC-010: Spec: quadratic_extension — AddExtension
V-SCT-SPEC-011: Spec: quadratic_extension — ExpExtension
V-SCT-SPEC-012: Spec: quadratic_extension — InnerProductExtension .
V-SCT-SPEC-013: Spec: quadratic_extension — InverseExtension .
V-SCT-SPEC-014: Spec: quadratic_extension —IsZero
V-SCT-SPEC-015: Spec: quadratic_extension — Lookup
V-SCT-SPEC-016: Spec: quadratic_extension — Lookup2
V-SCT-SPEC-017: Spec: quadratic_extension — MulAddExtension
V-SCT-SPEC-018: Spec: quadratic_extension — MulExtension
V-SCT-SPEC-019: Spec: quadratic_extension — ScalarMulExtension . . .
V-SCT-SPEC-020: Spec: quadratic_extension — SubExtension
V-SCT-SPEC-021: Spec: quadratic_extension — SubMulExtension

6 Formal Verification

6.1 Formal Verification Procedure,

6.2 Properties Verified o

Glossary

57
57
57
59
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

81
81
81

83

& Executive Summary

From Nov. 6, 2023 to Nov. 27, 2023, Succinct engaged Veridise to review the security of their
gnark-plonky2-verifier project. The review covered the circuits implementing a plonky?2 verifier.
The circuits were implemented using the gnark zk-SNARK library*, which is written in the Go
language. Veridise conducted the assessment over 12 person-weeks, with 4 engineers reviewing
code over 3 weeks on commit 0x89b5a01e.

Closely following the circuit review, from Jan. 4 to Jan. 5, 2024, Succinct further engaged Veridise
to review the security of their SuccinctGateway. This review covered two smart contracts written
in Solidity inside of the succinctx repository’. The auditing strategy involved a tool-assisted
analysis of the source code performed by Veridise engineers as well as extensive manual
auditing.

Code assessment. The gnark-plonky2-verifier developers provided the source code of the
gnark-plonky2-verifier circuits for review. To facilitate the Veridise auditors” understanding
of the code, the gnark-plonky2-verifier developers provided a high-level overview of the
implemented circuits as well as several references to material from the original plonky? verifier?.
Following the audit, 2 minor changes to gnark-plonky2-verifier were also reviewed by Veridise,
adding a small feature and slight optimizations.

Generally, the gnark-plonky2-verifier closely mirrored the original implementation of the
plonky?2 verifier so our auditing team could easily spot any deviations from the reference
implementation. Except for some missing features, the Veridise auditors spotted very few
omissions/deviations from the reference implementation. The source code also contained some
documentation in the form of READMESs and documentation comments on core functions and
structs.

The SuccinctGateway developers also provided the source code. These contracts are original to
Succinct. The SuccinctGateway allows users to designate certain smart contracts as “verifier
contracts,” then request whitelisted sets of provers to perform on-chain calls with inputs which
satisfy the verifiers. The developers worked with Veridise to provide additional information
about the behavior and intended usage, answering several questions about the protocol.

The source code contained a test suite. The tests across the entire suite covered, on average,
79.1% of the gnark-plonky?2-verifier program statements under test (with a standard deviation
of 22.5), and 71.2% of the contract statements.

Summary of issues detected. The audit uncovered 39 issues, 3 of which are assessed to be
of high or critical severity by the Veridise auditors. All three of these issues (V-SCT-VUL-001,

*https://github.com/succinctlabs/gnark-plonky2-verifier/tree/89b5a01le4b
¥ https://github.com/succinctlabs/succinctx/tree/abd43565
¥ https://github.com/0xPolygonZero/plonky2/tree/64ccl000e7

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

https://github.com/succinctlabs/gnark-plonky2-verifier/tree/89b5a01e4b
https://github.com/succinctlabs/succinctx/tree/abd43565
https://github.com/0xPolygonZero/plonky2/tree/64cc1000e7

1 Executive Summary

V-SCT-VUL-002, and V-SCT-VUL-003) were caused by missing constraints on values provided
by hintsS. No issues of high or critical severity were identified inside the smart contracts.

The Veridise auditors also identified several medium-severity issues, including a missing range
check in the evaluation proofs (V-SCT-VUL-005), the improper use of a function which may
mutate its arguments (V-SCT-VUL-004), and the possibility of locked funds in the contract
(V-SCT-VUL-005). Finally, the audit uncovered a number of minor issues, including slightly
over-constrained circuits (V-SCT-VUL-007, V-SCT-VUL-012), ignored parameters (V-SCT-VUL-
033), minor logical errors (V-SCT-VUL-009, V-SCT-VUL-010, V-SCT-VUL-028) and various
maintainability issues.

As of commit 0xc01f530fe, Succinct has fixed all of the identified issues in the gnark-plonky2-
verifier. The SuccinctGateway developers have also provided fixes to all of the identified
issues. Only the warning issue V-SCT-VUL-026 remains partially unresolved. However, any
centralization risk to the users has been mitigated by allowing custom prover whitelists. The
only remaining risk is left to the contract operators, as the fee vault may be changed if the owner
is compromised, or users who choose to rely on the default prover list.

Recommendations. After auditing the protocol, the auditors had a few suggestions to improve
the gnark-plonky2-verifier.

Extended type system for field emulation. Succinct’s type system does much to improve the
readability and safety of their circuits. One key distinction which is not included in the type
system, but could greatly simplify reasoning about the code, is distinguishing between reduced
Goldilocks Field elements and unreduced field elements. This change would have two positive
impacts. First, by limiting the interface for constructing a reduced Goldilocks field element, one
may know whether the underlying representation of the Goldilocks field element is reduced
from the type alone. This drastically reduces the number of caller assumptions in the codebase.
Second, by keeping track programmatically of the maximum number of bits required to represent
a given unreduced Goldilocks field elements, reductions may be performed “just-in-time” rather
than via manual reasoning.

More detailed reference comments. Since Succinct’s code base is almost a direct port of Polygon Zero’s
plonky?2 repository, most of the functions and arguments match the reference implementation
almost exactly. However, certain parts of the code are altered or moved across the codebase for
efficiency (see, for example, V-SCT-VUL-018). This can lead to some confusion for readers, and
may be difficult to keep in sync with changes to the plonky2 repository. We would recommend
documenting each deviation from the reference implementation, preferably with a link to the
relevant source code. If possible, providing a link to the reference implementation of each
function would greatly improve readability, as the plonky?2 code repository contains relevant
comments and documentation.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

§ https://docs.gnark.consensys.net/HowTo/write/hints

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

https://docs.gnark.consensys.net/HowTo/write/hints

& Project Dashboard

Table 2.1: Application Summary.

Platform

gnark-plonky2-verifier 0x89b5a01le gnark
SuccinctGateway 0xb1f6bd08 - Oxabd43565 Sohdlty Ethereum

Table 2.2: Engagement Summary.

Comsulants Engazed L Lovel of o

Nov. 6 - Nov. 27,2023 Manual & Tools 12 person-weeks
Jan. 4 - Jan. 5, 2024 Manual & Tools 2 4 person-days

Table 2.3: Vulnerability Summary.

Critical-Severity Issues 3 3
High-Severity Issues 0 0
Medium-Severity Issues 3 3
Low-Severity Issues 9 9
Warning-Severity Issues 12 1
Informational-Severity Issues 12 12
TOTAL 39 38

Table 2.4: Category Breakdown.

Maintainability 13
Logic Error

Data Validation
Underconstrained Circuit
Overconstrained Circuit
Locked Funds

Denial of Service

Access Control
Constraint Optimization
Gas Optimization

—_
—_

R R R Rk, N W O

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

& Audit Goals and Scope

3.1 Audit Goals

The engagement was scoped to provide a security assessment of gnark-plonky2-verifier’s
zero-knowledge circuits and the as outlined below. In our audit, we sought to answer the

following questions:

VYV VY VY VYV VVYYVvYyYyYy

Are any circuit wires under-constrained?

Can a generated witness deviate from expected behavior?

Do all parameters have bound checks so that computations do not over/underflow?
Are there unnecessary constraints that only increase verifier overhead?

Are Goldilocks Field computations properly emulated within the BN254 field?

Do the PLONK gates contain arithmetic errors?

Will the implementation of Fast Reed-Solomon IOPPs accept invalid commitments?
Does the verifier accept invalid proofs?

Can any non-permissioned entity execute an unexpected method in the gateway?

Can the calls and callbacks requested by users be exploited via careful choice of the
callback address?

Are any common Solidity vulnerabilities (reentrancy, large stake holder attacks, unchecked
return values, etc.) present in the contracts?

Can funds be locked in the contracts?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, our audit involved a combination of

human experts and automated program analysis & testing tools. In particular, we conducted

our audit with the aid of the following techniques:

>

Static analysis. To identify potential common vulnerabilities, we leveraged our custom
smart contract analysis tool Vanguard. This tools are designed to find instances of common
smart contract vulnerabilities, such as reentrancy and uninitialized variables.
Fuzzing/Property-based Testing. We leverage fuzz testing to determine if the protocol may
deviate from the expected behavior (see Chapter 5 for discussion and results). To do this,
we formalize the desired behavior of the protocol and then perform differential fuzzing to
determine if a violation of the specification can be found.

Formal Verification. We also leverage our custom formal verification tool Picus to verify
safety properties of the zero-knowledge circuits (see Chapter 6 for discussion and results).
This tool is designed to prove or find violations of determinism, which is an important
safety property for zero-knowledge circuits.

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

3 Audit Goals and Scope

Scope. The scope of this audit is limited to the Go language files in the following directories
of the repository located at https://github.com/succinctlabs/gnark-plonky2-verifier
(excluding all *_utils.go, *_test.go, *_constants.go, util.go, and vars.go files):

» challenger/

» fri/

» goldilocks/

» plonk/ and plonk/gates/

» poseidon/

» verifier/

For the smart contracts, only the SuccinctGateway.sol and FunctionRegistry.sol files were
in scope.

During the audit, the Veridise auditors referred to the excluded files but assumed that they
have been implemented correctly.

Methodology. Veridise auditors inspected the provided tests and read the documentation for
both gnark-plonky2-verifier and the SuccinctGateway. They then began a manual audit of the
code assisted by both automated testing and verification tools. During the audit, the Veridise
auditors regularly met with the gnark-plonky2-verifier developers to ask questions about the
code. The Veridise auditors also referred to the original Plonky2 implementation (occasionally
cited as “the reference implementation”) during the course of the audit to check for differences
in gnark-plonky2-verifier's implementation.

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad

Not Likely | I g
Likely [0 WASMAE | Low. | Medium [0 High
Very Likely [oBoWe o Medium [Highe) IR

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

Very Bad Protocol Breaking

Medium

Table 3.2: Likelihood Breakdown

Not Likely | A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)
Likely | - OR -

Requires a small set of users to perform an action

Very Likely | Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky2-verifier

https://github.com/succinctlabs/gnark-plonky2-verifier
https://github.com/0xPolygonZero/plonky2/tree/471ff68d512bd51477b713bf3d3e961c474ced99

3.3 Classification of Vulnerabilities

Table 3.3: Impact Breakdown

Somewhat Bad | Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad | -OR-

Affects a very small number of people and requires aid to fix

Affects a large number of people and requires aid to fix

Very Bad | -OR -

Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking | Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

%5 Vulnerability Report

In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowledged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

V-SCT-VUL-001 inverse missing range check Critical Fixed
V-SCT-VUL-002 Unconstrained variable in Reduce() Critical Fixed
V-SCT-VUL-003 Unconstrained variable in ReduceWithMaxBits() Critical Fixed
V-SCT-VUL-004 MulAdd() may mutate arguments Medium Fixed
V-SCT-VUL-005 Missing range-check on EvalProofs Medium Fixed
V-SCT-VUL-006 Contracts: funds may be locked when feeVault is. . . Medium Fixed
V-SCT-VUL-007 FRI Parameter Ignored During Loading Low Fixed
V-SCT-VUL-008 interpolate() over-constrained Low Fixed
V-SCT-VUL-009 ArityBits = 8 will provoke errors Low Fixed
V-SCT-VUL-010 alpha value overwritten to 1 Low Fixed
V-SCT-VUL-011 Bitpacking operation may lead to overlap Low Fixed
V-SCT-VUL-012 evalL0 overconstrained Low Fixed
V-SCT-VUL-013 Salted evaluation not considered Low Fixed
V-SCT-VUL-014 Index calculation discrepancy Low Fixed
V-SCT-VUL-015 Contracts: _callbackGasLimit is unused Low Fixed
V-SCT-VUL-016 1added to TwoAdicSubgroup output twice Warning Fixed
V-SCT-VUL-017 Missed opportunities to use abstractions Warning Fixed
V-SCT-VUL-018 Unused functions/variables Warning Fixed
V-SCT-VUL-019 Bit reversal incorrect for ArityBits != 4 Warning Fixed
V-SCT-VUL-020 clearBuffer doesn’t clear the buffer Warning Fixed
V-SCT-VUL-021 Possible leakage of randomness Warning Fixed
V-SCT-VUL-022 Unused challenger parameter due to relocated logic Warning Fixed
V-SCT-VUL-023 Errors in gate Id functions Warning Fixed
V-SCT-VUL-024 Use of incorrect constant Warning Fixed
V-SCT-VUL-025 Missing degree check for CosetInterpolationGate Warning Fixed

V-SCT-VUL-026

V-SCT-VUL-027 Contracts: All _callbackAddresses permitted Warning Fixed
V-SCT-VUL-028 Replace GoldilocksHashOut size with named constant Info Fixed
V-SCT-VUL-029 Type error in bn254’s HashOrNoop() Info Fixed
V-SCT-VUL-030 Non-std range-check used Info Fixed
V-SCT-VUL-031 Various out-of-date comments and documentation Info Fixed
V-SCT-VUL-032 Typos in code Info Fixed
V-SCT-VUL-033 Ignored gate parameters Info Fixed
V-SCT-VUL-034 Hard-coded constants in code Info Fixed
V-SCT-VUL-035 No assertion that gnark is using BN254 Info Fixed
V-SCT-VUL-036 Inaccurate bounds-check on numConsts Info Fixed
V-SCT-VUL-037 Sub-optimal sub-expression in random access gate Info Fixed
V-SCT-VUL-038 Contracts: Code Recommendations Info Fixed
V-SCT-VUL-039 Contracts: Possible Wasted Gas Info Fixed
Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

Contracts: Centralization Risk

Warning Partially Fixed

10

© 00 N O U1 A W N

11

N

1

4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-SCT-VUL-001: inverse missing range check

Severity H@silell 89b5a01

g4 Ll Underconstrained Circuit Fixed
File(s) goldilocks/base.go

Location(s) Inverse()
Confirmed Fix At 9e96393

The goldilocks/base.go file implements standard operations for the Goldilocks field emulated
within the base field. One of these operations is Inverse(), which computes the inverse of a
Goldilocks field element.

The actual computation of the inverse is done using a hint. To ensure correctness, the inverse of
x is constrained to multiply with x to equal 1. This can be seen in the implementation below:

func (p *Chip) Inverse(x Variable) Variable {
result, err := p.api.Compiler().NewHint(InverseHint, 1, x.Limb)
if err !'= nil {
panic(err)

}

inverse := NewVariable(result[0])

product := p.Mul(inverse, x)
p.api.AssertIsEqual(product.Limb, frontend.Variable(1))
return inverse

-

Snippet 4.1: Implementation of Inverse()

However, in the above code, p.Mul assumes that inverse and x are reduced elements of the
Goldilocks field. More specifically, p.Mul(inverse, x) asserts that there exist field elements
quotient and remainder such that

inverse * x == quotient * MODULUS + remainder
0 <= quotient < MODULUS
0 <= remainder < MODULUS

Since the remainder is returned as the value of the product, the constraints that Inverse()
encodes can be summarized as follows:

inverse * x == quotient * MODULUS + remainder
0 <= quotient < MODULUS

0 <= remainder < MODULUS

remainder ==

Writing inv(x) for the inverse of x within the base field, we can solve for inverse.
| inverse := inv(x) * (quotient x MODULUS + 1)

Since inverse is not constrained to be in the Goldilocks field, this is a valid solution for any
0 <= quotient < MODULUS. Only one of these MODULUS-many solutions is the correct reduced
inverse.

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

4.1 Detailed Description of Issues

Impact Inverse() may return an element that is not a member of the Goldilocks field and is
not equal to the Goldilocks-inverse of x when reduced into the field.

To see that the latter statement holds, take any true Goldilocks-inverse xInv of x with non-zero
quotient, and note that xInv - MODULUS is a valid solution to the Inverse() constraints.

Recommendation Perform a range check on inverse, requiring it to be a member of the
Goldilocks field.

Developer Response We applied the recommended fix.

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

11

12

10
11
12
13
14
15
16
17
18
19
20
21
22

4 Vulnerability Report

4.1.2 V-SCT-VUL-002: Unconstrained variable in Reduce()

SIaely M Critical 89b5al1
g8 Sl Underconstrained Circuit Fixed
File(s) goldilocks/base.go

Location(s) Reduce()
Confirmed Fix At 297a820

The goldilocks/base.go file emulates the Goldilocks field within the base field. One important
operation is Reduce (), which maps an element of the base field down to an equivalent (modulo
the order of the Goldilocks field) element of the Goldilocks field.

The actual computation of the reduction is done using a hint. However, the result of the hint is
never included in a constraint with the variable x which is intended to be reduced.

func (p *Chip) Reduce(x Variable) Variable {
// Witness a ‘quotient’ and ‘remainder’ such that:
//
// MODULUS * quotient + remainder = x
//
// Must check that offset \in [0, MODULUS) and carry \in [0, 2"
RANGE_CHECK_NB_BITS) to ensure
// that this computation does not overflow. We use 2”RANGE_CHECK NB_BITS to
reduce the cost of the range check
//
// In other words, we assume that we at most compute a a dot product with
dimension at most RANGE_CHECK_NB_BITS - 128.

result, err := p.api.Compiler().NewHint(ReduceHint, 2, x.Limb)
if err !'= nil {
panic(err)

}

quotient := result[0]
p.rangeChecker.Check(quotient, RANGE_CHECK_NB_BITS)

remainder := NewVariable(result[1l])
p.RangeCheck(remainder)
return remainder

—

Snippet 4.2: Implementation of Reduce()

Since result is computed from x by a hint, that computation creates no constraints. As a result,
any quotient, remainder pair which satisfy the range checks will satisfy the entire Reduce()
constraints.

Impact When Reduce()ing to the Goldilocks field, an attacker may choose any Goldilocks field
element they desire.

Recommendation Require MODULUS * quotient + remainder to equal x.

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

4.1 Detailed Description of Issues 13

Developer Response We applied the recommended fix.

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

14

o U A W N

[c-IEN|

10
11
12
13
14
15
16
17
18
19
20

4 Vulnerability Report

4.1.3 V-SCT-VUL-003: Unconstrained variable in ReduceWithMaxBits()

STavS iyl Critical 89b5a01
g4 Ll Underconstrained Circuit Fixed
File(s) goldilocks/base.go

Location(s) ReduceWithMaxBits()
Confirmed Fix At 297a820

The function ReduceWithMaxBits () performs a reduction on a variable x which is assumed to
be representable in maxNbBits. The implementation suffers from the same lack of constraints
described in V-SCT-VUL-002 : x is not constrained by ReduceWithMaxBits ().

func (p *Chip) ReduceWithMaxBits(x Variable, maxNbBits uint64) Variable {
// Witness a ‘quotient’ and ‘remainder’ such that:
//
// MODULUS * quotient + remainder = x
//
// Must check that remainder \in [0, MODULUS) and quotient \in [0, 2"maxNbBits)
to ensure that this
// computation does not overflow.
result, err := p.api.Compiler().NewHint(ReduceHint, 2, x.Limb)
if err !'= nil {
panic(err)
}
quotient := result[0]
p.rangeChecker.Check(quotient, int(maxNbBits))
remainder := NewVariable(result[1])
p.RangeCheck(remainder)
return remainder
}

Snippet 4.3: Implementation of ReduceWithMaxBits ()

Since result is computed from x by a hint, that computation creates no constraints. As a
result, any quotient, remainder pair which satisfy the range checks will satisfy the entire
ReduceWithMaxBits () constraints.

Impact When calling ReduceWithMaxBits() to map an element into the Goldilocks field, an
attacker may choose any Goldilocks field element they desire.

Recommendation Require MODULUS * quotient + remainder to equal x.

Developer Response We applied the recommended fix.

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

© 0 N O U W N

=
<l

4.1 Detailed Description of Issues

4.1.4 V-SCT-VUL-004: MulAdd() may mutate arguments

Medium 89b5a01
Logic Error Fixed
goldilocks/base.qgo
MulAddNoReduce(), MulAdd()
a6707ed

The documentation for frontend.API.MulAcc states that it may modify the first argument:

// MulAcc sets and return a = a + (bxc).

//

// ! The method may mutate a without allocating a new result. If the input
// 1is used elsewhere, then first initialize new variable, for example by
// doing:

//

// acopy := api.Mul(a, 1)

// acopy = MulAcc(acopy, b, c)

//

// ! But it may not modify a, always use MulAcc(...) result for correctness.
MulAcc(a, b, c Variable) Variable

Snippet 4.4: Documentation of frontend.API.MulAcc

Both MulAdd and MulAccNoReduce in goldilocks/base.go call MulAcc directly on c.Limb (from
argument c). For example, see the below definition of MulAddNoReduce().

func (p *Chip) MulAddNoReduce(a Variable, b Variable, c Variable) Variable {
return NewVariable(p.api.MulAcc(c.Limb, a.Limb, b.Limb))

-

Snippet 4.5: Definition of MulAddNoReduce ()

Impact If the c.Limb frontend.Variable is a pointer type (which is allowed and does occur
in this codebase), it is possible for MulAdd and MulAddNoReduce to mutate their arguments
and propagate unintended modifications to other callsites. This potentially affects many
locations, since MulAdd and MulAddNoReduce are the base operations of many other functions,
including Add and Sub in goldilocks/base.go, AddExtension and SubExtension in goldilocks
/quadratic_extension.go, and AddExtensionAlgebra and SubExtensionAlgebra in goldilocks
/quadratic_extension_algebra.go. Some possible affected callsites where MulAcc may affect
subsequent computation include:

» evalVanishingPoly in plonk/plonk.go: wireValuePlusGamma may be modified and taint the
denominator calculation.

» EvalUnfiltered in plonk/gates/poseidon_gate.go: deltal may be modified and taint the

state[i+4] calculation.

friCombineInitialin fri/fri.go: subgroupX_QE may be modified.

interpolate in fri/fri.go: x may be modified for future loop iterations.

EvalUnfiltered in plonk/gates/constant_gate.go: localConstants may be modified.

EvalUnfiltered in plonk/gates/public_input_gate.go: localWires may be modified.

vVvyVvyy

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

15

16 4 Vulnerability Report

Recommendation Follow the recommendation in the gnark documentation and copy c.Limb
before performing the MulAcc operation for safety:

1| cLimbCopy := p.api.Mul(c.Limb, 1)
2| p.api.MulAcc(cLimbCopy, a.Limb, b.Limb)

Developer Response We now make a copy of the first argument before passing it to frontend.
api.MulAcc in all cases where this could be an issue.

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

w

O 0 N o U A

11
12
13

4.1 Detailed Description of Issues

4.1.5 V-SCT-VUL-005: Missing range-check on EvalProofs

Medium 895201
Data Validation Fixed
verifier/verifier.go
rangeCheckProof()

Gat5boa

Only the first item of the InitialTreesProof.EvalProofs list is range checked (i.e., only on

queryRound.InitialTreesProof.EvalsProofs[0]):

// Range check the openings proof.
for _, queryRound := range proof.OpeningProof.QueryRoundProofs {
for _, initialTreesElement := range queryRound.InitialTreesProof.EvalsProofs
[0] .Elements {
c.glChip.RangeCheck(initialTreesElement)
}

for _, queryStep := range queryRound.Steps {
for _, eval := range queryStep.Evals {
c.glChip.RangeCheckQE(eval)
}

-

Snippet 4.6: Range check performed on the openings proof.

Impact The values of EvalsProofs are used in fri/fri.go (in verifyInitialProof and in
friCombineInitial), so the non-range-checked inputs could result in the violation of other
assumptions in the codebase.

For example, the unchecked Elements are eventually hashed in BN254Chip.HashNoPad (verifyInitialProof

— verifyMerkleProofToCapWithCapIndex — HashOrNoop — HashNoPad), which assumes that the
inputs are reduced goldilocks field elements (as the bit-packing operation assumes the inputs
are at most 64 bits).

Recommendation Perform range checks on all elements of the EvalsProofs list.

Developer Response We applied the recommended fix.

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

17

18

o U~ W N

4 Vulnerability Report

4.1.6 V-SCT-VUL-006: Contracts: funds may be locked when feeVault is disabled

Medium abd4356
Locked Funds Fixed
contracts/src/SuccinctGateway.sol
SuccinctGateway

Confirmed Fix At https://github.com/succinctlabs/succinctx/pull/312

The SuccinctGateway contract allows a privileged user (called the guardian) to set the address
of the IFeeVault contract that will hold fees paid by users for their requests. This is done via the
setFeeVault() function.

/// @dev Sets the fee vault to a new address. Can be set to address(0) to disable
fees.

/// @param _feeVault The address of the fee vault.

function setFeeVault(address _feeVault) external onlyGuardian {
emit SetFeeVault(feeVault, _feeVault);
feeVault = _feeVault;

-

Snippet 4.7: Definition of SuccinctGateway.setFeeVault()

The documentation states that the fee vault address "can be set to address(0) to disable fees" and
both the requestCall() and requestCallback() functions correctly ensure feevault != address
(0) before depositing the msg.value into the feevVault contract. However, when feevault ==

address(0) the msg.value funds sent by msg.sender with the transaction are retained in the
SuccinctGateway contract with no way for the user to retrieve them.

Impact If feeVault == address(0) and a user sends funds when calling the requestCall() or
requestCallback() functions, those funds will be locked in the SuccinctGateway contract.

Recommendation The SuccinctGateway contract should provide a way for the user to retrieve
their funds that were locked because feeVault == address(0).

Developer Response We added a recover() function to the SuccinctGateway to allow the
guardian to initiate a fund transfer to a given address.

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

https://github.com/succinctlabs/succinctx/pull/312

4.1 Detailed Description of Issues

4.1.7 V-SCT-VUL-007: FRI Parameter Ignored During Loading

Low 895201
L

ogic Error Fixed
types/common_data.go
ReadCommonCircuitData()
717952

Note: This is technically out of scope, but our team noticed this issue while reviewing the type
representation of the different elements inside the codebase.

Function ReadCommonCircuitData populates all fields for an instance of type CommonCircuitData,
which is then returned to the caller. However, when populating the FriParams (see snippet
bellow), parameter Hiding is ignored.

commonCircuitData.FriParams.Config.RateBits = raw.FriParams.Config.RateBits

commonCircuitData.FriParams.Config.CapHeight = raw.FriParams.Config.CapHeight

commonCircuitData.FriParams.Config.ProofOfWorkBits = raw.FriParams.Config.
ProofOfWorkBits

commonCircuitData.FriParams.Config.NumQueryRounds = raw.FriParams.Config.
NumQueryRounds

commonCircuitData.FriParams.ReductionArityBits = raw.FriParams.ReductionArityBits

Snippet 4.8: Snippet from ReadCommonCircuitData

Impact Function validateFriProofShape might panic for proofs whose Hiding parameter is
set to true. This can negatively impact some users when trying to generate a proof.

Recommendation Werecommend loading the Hiding parameter in function ReadCommonCircuitData

Developer Response We have decided to require the Hiding parameter to be set to false.

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

19

20

N o AW N =

4 Vulnerability Report

4.1.8 V-SCT-VUL-008: interpolate() over-constrained

Low 395001
Overconstrained Circuit Fixed
fri/fri.go

interpolate()

24154

The interpolate() function takes a vector of xPoints and yPoints as inputs and uses them to
evaluate the polynomial they define at a new point x. This is handled in two cases:

1. When x is not equal to any xPoints[i].
2. When x is equal to some xPoints[i].

In case 1, a division with a denominator of x - xPoints[i] is computed.

f.gl.DivExtension(
barycentricWeights[il],
f.gl.SubExtension(
X,
xPoints[i],
),
),

Snippet 4.9: Division by x - xPoints[i] in interpolate().

Case 2, later on in the function, uses selectors to evaluate to yPoints[i] if x = xPoints[i].

However, DivExtension computes the Inverse directly, requiring it to exist.

func (p *Chip) InverseExtension(a QuadraticExtensionVariable)
QuadraticExtensionVariable {
a0IsZero := p.api.IsZero(a[0].Limb)
allsZero := p.api.IsZero(a[l].Limb)
p.api.AssertIsEqual(p.api.Mul(a@IsZero, allsZero), frontend.Variable(0))

Snippet 4.10: The beginning of InverseExtension(), which asserts the existence of an inverse.

So, whenever case 2 occurs, the constraints for case 1 will be unsatisfiable.

Impact Evaluating the polynomial at one of the xPoints using interpolate() results in
unsatisfiable constraints.

Recommendation To make case 2 satisfiable, the developers need to perform an unsafe
division, and then use the yPoints whenever the denominator is zero.

See also V-SCT-VUL-012.

Developer Response [If applicable]

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

O 0 N O U R W N

=
(o]

U s W N =

4.1 Detailed Description of Issues

4.1.9 V-SCT-VUL-009: ArityBits = 8 will provoke errors

Low 895201
Logic Error Fixed
fri/fri.go
computeEvaluation()

cOcbacs

The computeEvaluation() function uses an arityBits of at most 8 to evaluate the next reduced

FRI polynomial. evals, which is used to perform this computation, is an array of length
arity := 2”arityBits.

func (f *Chip) computeEvaluation(
// [VERIDISE] ...
) gl.QuadraticExtensionVariable {
arity := 1 << arityBits
if (len(evals)) !'= arity {
panic("len(evals) ! arity")
}
if arityBits > 8 {
panic("currently assuming that arityBits is <= 8")

}

Snippet 4.11: Checks at the beginning of computeEvaluation()

Later, when permuting the evaluations, 8-bit indices are used.

permutedEvals := make([]gl.QuadraticExtensionVariable, len(evals))
for i := uint8(0); i < uint8(len(evals)); i++ {
newIndex := bits.Reverse8(i) >> arityBits
permutedEvals[newIndex] = evals[i]

-

Snippet 4.12: Evaluation of permutedEvals.

Casting len(evals) to uint8 will truncate any values larger than 255. If arityBits == 8, then
len(evals) == 256, and uint8(len(evals)) evaluates to zero.

Impact For an arityBits of 8, this function will cause errors due to invalid memory accesses.
Currently, the only callers use arityBits == 4, so this will only be an issue in future iterations
of the protocol.

Recommendation Require arityBits to be at most 7, or handle the arityBits == 8 case
separately.

Developer Response We now use a <= bounds-check with uint8(len(evals)-1).

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

21

22

4 Vulnerability Report

4.1.10 V-SCT-VUL-010: alpha value overwritten to 1

Low 8955201
Logic Error Fixed
poseidon/bn254.go
HashOrNoop()

5766879

The big.Int.Exp function documentation states that, for z.Exp(x, y, m):

Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z.
So, in the loop body:
for i, inputElement := range input {

returnVal = c.api.MulAcc(returnVal, inputElement, alpha.Exp(alpha, big.NewInt(
int64(1i)), nil))

-

Snippet 4.13: Loop body in HashOrNoop.

During the execution of alpha.Exp(alpha, big.NewInt(int64(i)), nil), alpha will be set to1
(as i = 0in the first iteration) and will remain 1 for all future iterations.

Impact This changes the computation of the function to effectively sum(input), which does
not appear to be the desired computation.

Recommendation Change alpha.Exp(...) to new(big.Int).Exp(...), or remove this logic if
unused.

Developer Response We applied the recommended fix.

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

https://pkg.go.dev/math/big#Int.Exp

o U~ W N

4.1 Detailed Description of Issues

4.1.11 V-SCT-VUL-011: Bitpacking operation may lead to overlap

I sobsa01
ogte Boed
poseidon/bn254.go
HashOrNoop(

5766875

In HashOrNoop, if there are fewer than 4 elements in the input vector (len(input) <= 3), the
function attempts to pack the elements into a single BN254 variable and return the packed
value otherwise unmodified:

1|if len(input) <= 3 {

2 returnVal := frontend.Variable(0)

3

4 alpha := new(big.Int).SetInt64(1l << 32)

5 for i, inputElement := range input {

6 returnVal = c.api.MulAcc(returnVal, inputElement, alpha.Exp(alpha, big.NewInt
(int64(i)), nil))

7 }

8 return BN254HashOut(returnVal)

9|} else { ... }

Snippet 4.14: Case in HashOrNoop when len(input) <= 3.

(Note that this does not function correctly due to the prior issue V-SCT-VUL-010).

The value of alphais 1 << 32; however, Goldilocks variables may take up 64 bits, and so the
packing operation may end up modifying some of the bits of each of the input elements while
constructing the output value. This logic appears to be implemented correctly in HashNoPad,
which performs this operation with two_to_64:

two_to_32 := new(big.Int).SetInt64(1 << 32)
two_to_64 := new(big.Int).Mul(two_to_32, two_to_32)
inter := frontend.Variable(0)
for k := 0; k < len(bn254Chunk); k++ {
inter = c.api.MulAcc(inter, bn254Chunk[k].Limb, new(big.Int).Exp(two_to_64,
big.NewInt(int64(k)), nil))
}

Snippet 4.15: Bitpacking operation in HashNoPad.

Impact This changes the computation of the function, as the function does perform computation
over the input values and is not a no-op as the function name implies.

Recommendation Change alpha to 1 << 64 (see HashNoPad for computation of two_to_64), or
remove this logic if unused.

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

23

24 4 Vulnerability Report

Developer Response We applied the recommended fix by replacing alpha := (1 << 32) with
alpha := (1 << 32)"2.

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

00 N O Ul W N

4.1 Detailed Description of Issues

4.1.12 V-SCT-VUL-012: evalL0 overconstrained

Low 895201
Overconstrained Circuit Fixed
plonk/plonk.go

evalLO(

a2fsi

The evall0 function evaluates (x*n - 1) / (n x (x-1)).

denominator := glApi.SubExtension(
glApi.ScalarMulExtension(x, p.DEGREE),
p.DEGREE_QE,

)

return glApi.DivExtension(
evalZeroPoly,
denominator,

Snippet 4.16: Computation of and divisionby n * (x - 1), computedasn * x - n.

As described in V-SCT-VUL-008, DivExtension() is a safe division, asserting that denominator
I= 0. If x happens to equal 1, then the denominator will be zero, and these constraints will be
unsatisfiable.

Note that 0xPolygonZero’s plonky?2 repository handles the x = 1 case by returning 1 directly.

Impact If the evaluation point ever happens to be 1, the circuits will become unsatisfiable.
In this case, the prover will need to generate a new proof, likely going through the grinding
process again to generate new challenges.

Recommendation As the uses of DivExtension() in this issue and in V-SCT-VUL-008 are the
only (non-test) uses of DivExtension(), consider making a function DivExtensionOr(), which
returns the division when the denominator is non-zero and a default value otherwise.

Developer Response [If applicable]

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

25

https://github.com/0xPolygonZero/plonky2/blob/79c6de140dd76c6d3ae8769d453a9f723adf0e6e/plonky2/src/plonk/plonk_common.rs#L57

26

W 0 N o U A W N

=
<)

12
13
14
15

0 N O U~ W N

4 Vulnerability Report

4.1.13 V-SCT-VUL-013: Salted evaluation not considered

Sl Low 89b5a01
#8428 Logic Error Fixed

File(s) fri/fri.go
Location(s) friCombinelnitial()
Confirmed Fix At

In friCombineInitial(), the oracle evaluations of the polynomials from each batch are gathered

in a loop.
for i := 0; i < len(instance.Batches); i++ {
batch := instance.Batches[i]
reducedOpenings := precomputedReducedEval[i]
point := batch.Point
evals := make([]gl.QuadraticExtensionVariable, 0)
for _, polynomial := range batch.Polynomials {
evals = append (
evals,
gl.QuadraticExtensionVariable{
proof.EvalsProofs[polynomial.OracleIndex].Elements[polynomial.
PolynomialInfo],
gl.Zero(),
+
)
}

Snippet 4.17: Snippet from friCombineInitial().

In the corresponding location in the plonky2 codebase, a variable salted is computed and the
evaluation is computed using unsalted_eval().

let poly_blinding = instance.oracles[p.oracle_index].blinding;
let salted = params.hiding && poly_blinding;
proof.unsalted_eval(p.oracle_index, p.polynomial_index, salted)

Snippet 4.18: Computation of each element of evals in the plonky?2 repository.

The definition of unsalted_eval() is shown below. salt_size(b) is equivalent to the statement
if b SALT_SIZE else 0.

pub(crate) fn unsalted_eval(&self, oracle_index: usize, poly_index: usize, salted:
bool) -> F {
self.unsalted_evals(oracle_index, salted)[poly_index]
}
fn unsalted_evals(&self, oracle_index: usize, salted: bool) -> &[F] {
let evals = &self.evals_proofs[oracle_index].0;
&evals[..evals.len() - salt_size(salted)]
}

Snippet 4.19: Definition of unsalted_eval()

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky2-verifier

https://github.com/0xPolygonZero/plonky2/blob/6d751b13c1356ecd280bb57b446b530e0c4ad743/plonky2/src/fri/verifier.rs#L150

4.1 Detailed Description of Issues 27

As can be seen, the Go implementation assumes salted is set to false. Since each plonk oracle
in the Go repository does have a Blinding parameter which may be true or false, this equates
to hard-coding params.Hiding to false.

However, the params .Hiding attribute is used elsewhere in the codebase, e.g. in validateFriProofShape
(), so it is not assumed to be false everywhere.

Impact Extra work may occur to validate the salt evaluations. A prover working based off of
the plonky?2 repository may incorrectly elide these evaluations.

Recommendation Implement the logic of unsalted_eval().

Developer Response We have decided to require the Hiding parameter to be set to false.

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

28

4 Vulnerability Report

4.1.14 V-SCT-VUL-014: Index calculation differs from reference implementation

Low 8955201
Logic Error Fixed
plonk/gates/coset_interpolation_gate.go
EvalUnfiltered()

Sddeda2

The calculation of endIndex in function EvalUnfiltered of the CosetInterpolationGate deviates
from the reference implementation. Specifically, the reference implementation takes the min
between start_index + degree - 1and num_points (see here). The gnark implementation, on

the other hand, does not consider the number of points at all (see snippet bellow).

1|endIndex := startIndex + g.degree - 1

Snippet 4.20: Snippet from Evalunfiltered().

Impact This may result in a crash due to out of bounds index or, worse, wrong constraint

evaluation.

Recommendation We recommend making the gnark implementation consistent with the

reference one.

Developer Response We applied the recommended fix.

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

https://github.com/0xPolygonZero/plonky2/blob/main/plonky2/src/gates/coset_interpolation.rs#L225

O 0 N o U A W N

=
<)

4.1 Detailed Description of Issues

4.1.15 V-SCT-VUL-015: Contracts: _callbackGasLimit is unused

il Low abd4356
§84°J8 Denial of Service Fixed

File(s) contracts/src/SuccinctGateway.sol
Location(s) fulfillCallback()
Confirmed Fix At https://github.com/succinctlabs/succinctx/pull/316

The SuccinctGateway contract contains a fulfillCallback() function that the prover calls to
fulfill an earlier request made via the requestCallback() function.

/// @dev Fulfills a request by providing the output and proof.

/// @param _nonce The nonce of the request.

/// @param _functionId The function identifier.

/// @param _inputHash The hash of the function input.

/// @param _callbackAddress The address of the callback contract.
/// @param _callbackSelector The selector of the callback function.
/// @param _callbackGasLimit The gas limit for the callback function.
/// @param _context The function context.

/// @param _output The function output.

/// @param _proof The function proof.

function fulfillCallback(

Snippet 4.21: Definition of SuccinctGateway.fulfillCallback()

The _callbackGasLimit parameter of the fulfillCallback() function is not used within that
function to limit the gas usage of the callback function.

Impact The callback function can contain arbitrary code that may have a very high gas usage
or exhaust the gas limit altogether and cause the callback to revert. If the provers are expected
to pay the gas fees, a malicious callback function may attack their solvency.

Recommendation If the intention is for the user to pay the callback gas fees, and for the
provers to pay the fees of the fulfillCallback() function itself, the callback gas should be
limited by using .call{gas: _callbackGasLimit}(...).

Note that, in this case, there is a still the opportunity for a "returnbomb," in which the user
callback returns a very large value. Though the fulfillCallback() function does not use the
return value, the generated EVM code will copy the entire returndata to memory after the call. To
mitigate this, inline assembly can be used instead of the Solidity call() function so that the return
data can be ignored altogether. See https://github.com/nomad-xyz/ExcessivelySafeCall
for a more complete description and solution.

Developer Response Although we generally will always simulate before sending for fulfill
() transactions, weadded {gas: _callbackGasLimit}tothe_callbackAddress.call() statement
as an extra precaution.

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

https://github.com/succinctlabs/succinctx/pull/316
https://github.com/nomad-xyz/ExcessivelySafeCall

30

o U~ W N R

4 Vulnerability Report

4.1.16 V-SCT-VUL-016: 1 added to TwoAdicSubgroup output twice

Warning 895501
Logie Error Fixed
goldilocks/base.go
TwoAdicSubgroup()

2043890

1 is added to the output vector res before the for loop, which then computes the remainder of
the subgroup with the primitive root of unity (i.e., w, @?,...).

res = append(res, goldilocks.NewElement(1))
for i :=0; i < (1 << nLog); i++ {
lastElement := res[len(res)-1]

res = append(res, xlastElement.Mul(&lastElement, &rootOfUnity))

-

Snippet 4.22: Loop computing the two-adic subgroup in TwoAdicSubgroup.

However, the loop iterates through values [0, pnlog _ 1], which compute output values ranging
from [w, a)zmg]. Since w2 = 1, the last element added to the res vector will be 1, which is
redundant, as 1 was already added to the vector.

Impact The output vector will contain the element 1 twice (i.e., [1, w, @?, ..., w27).

Recommendation Change the loop iteration to be bounded on i < (1 << nLog) - 1.

Developer Response We applied the recommended fix.

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

4.1 Detailed Description of Issues

4.1.17 V-SCT-VUL-017: Missed opportunities to use appropriate abstractions

SI9YSsiy M Warning 89b5a01
#h4J 8 Maintainability Fixed

File(s) See issue description
Location(s) See issue description
Confirmed Fix At 9617141

The following locations use inlined expressions instead of their already-created abstractions:

» challenger/challenger.go:

e The declaration of spongeState [poseidon.SPONGE_WIDTH]gl.Variable can be re-
placed with spongeState gl.GoldilocksState.

» goldilocks/base.go:

* Functions Sub and SubNoReduce can replace MODULUS.Uint64 () -1 with NegOne().
* Function Reduce duplicates the logic of ReduceWithMaxBits, so the body of Reduce
could be replaced with a single call: ReducewithMaxBits(x, RANGE_CHECK_NB_BITS).

» goldilocks/quadratic_extension.go:

* Function MulExtensionNoReduce could have replaced 7 with w.

* Function InverseExtension could have replaced p.api.IsZero(...Limb) with p.
IsZero(...).

* Functions MulAddExtension, MulExtension, SubMulExtension could have replaced two
calls to Reduce with a single call to ReduceExtension.

* Functions AddExtension and SubExtension could replace their calls to Add/Sub to
AddExtensionNoReduce/SubExtensionNoReduce followed by a call to ReduceExtension.

» goldilocks/quadratic_extension_algebra.go:
* Function ToQuadraticExtensionAlgebra could have replaced 2 with D.

» poseidon/goldilocks.go:

* Function HashNoPad could have replaced number 4 with len(hash).

* Function constantLayer could have replaced c.gl.MulAdd(..., gl.NewVariable(1),
...) with c.gl.Add(..., ...).

* Functions mdsRowShf and MdsRowShfExtension could have replaced [SPONGE_WIDTH]gl

.Variable with GoldilocksState.

Function mdsPartialLayerInit could replace gl.Newvariable(0) with a call to gl.

Zero().
» plonk/gates/reducing_gate.go:

¢ InfunctionEvalUnfiltered, coeff could beinitialized with ToQuadraticExtensionAlgebra
(ToQuadraticExtension(NewVariable(coeffs[i]))) rather than looping over D. A
similar issue occurs in numerous locations.

Impact This inlining makes the code slightly more verbose, and if the internal structure
changes (e.g. from refactoring), it would be easier and less error-prone to make one change to
the abstraction rather than at all inlined sites.

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

32 4 Vulnerability Report

Recommendation Use the appropriate abstractions.

Developer Response We applied the recommended fix.

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

4.1 Detailed Description of Issues

4.1.18 V-SCT-VUL-018: Unused functions/variables

Warning 895201
Maintainability Fixed
See issue description

See issue description

1203726

A few functions and variables are defined, but not used in the codebase.
» goldilocks/base.go:

® var REDUCE_NB_BITS_THRESHOLD uint8 is unused.
e func (p *Chip) Exp(...) is unused.

» poseidon/goldilocks.go:

e const MAX_WIDTH is unused.
» types/utils.go:

e func ReductionArityBits() is unused.
» variables/plonk.go

e func NewOpeningSet(...) is unused.

Impact If unmaintained, these functions may become out-of-sync with the codebase and
produce issues down the road if used.

Recommendation Remove the unused values.

Developer Response We applied the recommended fix.

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

33

34

U A W N =

4 Vulnerability Report

4.1.19 V-SCT-VUL-019: Bit reversal incorrect for ArityBits != 4

Warning 895201
Logic Error Fixed
fri/fri.go
computeEvaluation()

26abtad

The computeEvaluation() function uses an arityBits of at most 8 to evaluate the next reduced
FRI polynomial. evals, which is used to perform this computation, is an array of length
arity := 2”%arityBits. When permuting the evaluations, 8-bit indices are used.

permutedEvals := make([]gl.QuadraticExtensionVariable, len(evals))
for i := uint8(0); 1 < uint8(len(evals)); i++ {
newIndex := bits.Reverse8(i) >> arityBits
permutedEvals[newIndex] = evals[i]

-

Snippet 4.23: Evaluation of permutedEvals.

The reversed bits should be shifted by 8 - arityBits, not arityBits. For example, if arityBits
is 8, this will always return 0.

Impact For arityBits != 4, the wrong indices will be used. Currently, the only callers use
arityBits == 4, so this will only be an issue in future iterations of the protocol.

Recommendation Shiftby 8 - arityBits rather than arityBits.

Developer Response We applied the recommended fix.

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

4.1 Detailed Description of Issues

4.1.20 V-SCT-VUL-020: clearBuffer doesn’t clear the buffer

Warning 89b5201
Logic Error Fixed
challenger/challenger.go
clearBuffer()

of6466e

Function clearBuffer does not perform the expected operation of clearing a provided buffer;
rather, it ignores its input argument and instead returns a new buffer.

func clearBuffer(buffer []gl.Variable) []lgl.Variable {
return make([]gl.Variable, 0)

-

Snippet 4.24: Definition of function clearBuffer.

Impact This has the potential to cause programming errors and confusion about how and
when the buffers are cleared.

See related issue V-SCT-VUL-021.

Recommendation Either fix the implementation of clearBuffer so that it clears the buffer pro-
vided as an argument or rename the function to newBuffer and remove the unused parameter.

Developer Response We removed the clearBuffer() function to increase the code clarity.

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

35

36 4 Vulnerability Report

4.1.21 V-SCT-VUL-021: Possible leakage of randomness

Warning 89b5201
Logic Error Fixed
challenger/challenger.go
duplexing)

of6466e

The incorrect behavior of the clearBuffer function (see V-SCT-VUL-020) leads to an unintended
consequence in the duplexing function, which leaves the outputBuffer unmodified when it was
intended to be cleared before adding new data:

1| clearBuffer(c.outputBuffer)

2(for i := 0; 1 < poseidon.SPONGE_RATE; i++ {

3 c.outputBuffer = append(c.outputBuffer, c.spongeState[i])
40}

Snippet 4.25: Operations on outputBuffer in the duplexing function.

In the current implementation, the outputBuffer will already be empty here due to the
proper clearing operation performed in ObserveElement (c.outputBuffer = clearBuffer(c.
outputBuffer)).

Impact If the API were to change or the implementation of ObserveElement were to change,
the outputBuffer wouldn't be properly cleared in the duplexing function. This could lead to an
adaptive attack. The next challenge value would not be dependent on the most recent input,
and an attacker could leverage knowledge of the previous outputs to construct proof values
that would pass without being an otherwise legitimate proof.

Recommendation Add anassertioninto the duplexing function thatensures that the outputBuffer
is empty before appending newly computed values to ensure Fiat-Shamir is performed safely.

Developer Response We applied the recommended fix.

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

4.1 Detailed Description of Issues

4.1.22 V-SCT-VUL-022: Unused challenger parameter due to relocated logic

Warning 89b5a01
Maintainability Fixed
challenger/challenger.go
GetFriChallenges()

30d73da

In the function GetFriChallenges, the parameter degreeBits is unused. This is because the FRI
query index computation has been moved into the verifyQueryRound function in fri/fri.go.

xIndex = f.gl.Reduce(xIndex)
xIndexBits := f.api.ToBinary(xIndex.Limb, 64)[0 : f.friParams.DegreeBits+f.friParams.
Config.RateBits]

Snippet 4.26: FRI index computation.

This is a change from the original plonky2 implementation, which performs the computation in
the fri_challenges function (the analogue of the GetFriChallenges function).

Impact This could cause confusion for developers and lead to the introduction of redundant
computation if someone believes this computation has been erroneously omitted.

Recommendation Remove the unused parameter and add documentation explaining where
the logic is performed instead.

Developer Response We applied the recommended fix.

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

37

https://github.com/0xPolygonZero/plonky2/blob/f1be8409143ce5edaaefcaed9f6fe9365f7db992/plonky2/src/fri/challenges.rs#L55
https://github.com/0xPolygonZero/plonky2/blob/f1be8409143ce5edaaefcaed9f6fe9365f7db992/plonky2/src/fri/challenges.rs#L55

38 4 Vulnerability Report

4.1.23 V-SCT-VUL-023: Errors in gate Id functions

Warning 895201
Data Validation Fixed
See issue description

1d(

ceOdae

The following gates generate the incorrect Id with their Id functions:
» base_sum_gate.go:
e Parameter should be num_limbs not num_ops.
» multiplication_extension_gate.go:

e Id is listed as ArithmeticExtensionGate instead of MulExtensionGate.

» reducing_extension_gate.qgo:

e Parameter should be num_coeffs not num_ops.

» reducing_gate.go:

e Id is listed as ReducingExtensionGate instead of ReducingGate.
e Parameter should be num_coeffs not num_ops.

Impact These errors result in gate Ids being misreported as the incorrect gate or a gate with
mismatched parameters.

Recommendation Ensure that gate Id functions are up to date.

Developer Response We applied the recommended fix.

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

O 0 N o U A W N

e el
W N B ©

=
(G, B =N

4.1 Detailed Description of Issues

4.1.24 V-SCT-VUL-024: Use of incorrect constant

Waring 895201
Maintainability Fixed
fri/fri.go
verifyMerkleProofToCapWithCapIndex()

Confirmed Fix At 318c3ce

At the end of verifyMerkleProofToCapWithCapIndex(), a series of lookups are used to identify
the correct Merkle cap.

// We assume that the cap_height is 4. C(reate two levels of the Lookup2 circuit
if len(capIndexBits) != 4 || len(merkleCap) !'= 16 {
// [VERIDISE] ... error message here

-

const NUM_LEAF_LOOKUPS = 4
var leaflLookups [NUM_LEAF_LOOKUPS]poseidon.BN254HashOut
// First create the "leaf" lookup2 circuits
// The will use the least significant bits of the capIndexBits array
for i := 0; i < NUM_LEAF_LOOKUPS; i++ {
leafLookups[i] = f.api.Lookup2(
capIndexBits[0], capIndexBits[1],
merkleCap[i*NUM_LEAF_LOOKUPS], merkleCap[i*NUM_LEAF_LOOKUPS+1], merkleCap[ix*
NUM_LEAF_LOOKUPS+2], merkleCap[i*NUM_LEAF_LOOKUPS+3],
)

-

Snippet 4.27: Lookup assumptions and first round of lookups to find the correct Merkle cap.

Note the arguments passed to Lookup2 are merkleCap[i*NUM_LEAF_LOOKUPS] through merkleCapl
i*NUM_LEAF_LOOKUPS+3].

However, the loop stride over merkleCap is a fixed constant determined by Lookup2: 4. If
NUM_LEAF_LOOKUPS changes to a non-4 value, this loop will be incorrect.

Impact If len(merkleCaps) were some other power of 4 (e.g. 4 or 64), then NUM_LEAF_LOOKUPS
would also need to be changed (e.g. to 1 or 16). In this case, the parameters passed to Lookup2 ()
would be incorrect.

For example, if len(merkleCaps) were changed to 64, then the indexing operations would
provoke an out-of-bounds error.

Recommendation Access merkleCap on the range 4xi..4xi+3.

Developer Response We applied the recommended fix, using a new constant STRIDE_LENGTH
4.

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

39

40 4 Vulnerability Report

4.1.25 V-SCT-VUL-025: Missing degree check for CosetInterpolationGate

Warning 89b5a01
Data Validation Fixed
plonk/gates/coset_interpolation_gate.go
deserializeCosetInterpolationGate()
S886247

In deserializeCosetInterpolationGate, the parsed value for degree is not checked to be within
a certain range. However, according to the reference implementation, the degree needs to be at
least 2 in order for the coset interpolation to function properly.

Impact The missing check could lead to a divide-by-zero error in numIntermediates() if
g.degree == 1 or invalid computation if g.degree ==

Recommendation Add anassertion tocheckthatdegreeInt > lindeserializeCosetInterpolationGate

Developer Response We applied the recommended fix.

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

https://github.com/0xPolygonZero/plonky2/blob/ab70bc536d3a849b1f331d84d34579afe9235bd2/plonky2/src/gates/coset_interpolation.rs#L63

4.1 Detailed Description of Issues

4.1.26 V-SCT-VUL-026: Contracts: Centralization Risk

Warning abd4356
Access Control Partially Fixed
contracts/src/SuccinctGateway.sol
SuccinctGateway

Confirmed Fix At https://github.com/succinctlabs/succinctx/pull/310

The SuccinctGateway contract has a special set of accounts (called guardians) which can perform
privileged actions. This includes two primary actions:

1. Setting the feevault address.
2. Adding to/removing from the whitelisted allowedProvers list.

A second privileged role (called the TIMELOCK_ROLE) is given the ability to upgrade the contract.

Impact While the centralization risk associated to the TIMELOCK_ROLE is reduced by assigning
the role to a time-locked contract, if any guardian’s keys are compromised users may be harmed
in the following ways:

1. The fee vault address may be changed, stealing funds from the manager of the contract.
2. A malicious prover may use the fulfillCall() functions to make arbitrary calls on the
contract’s behalf.

Recommendation To mitigate the risks above, developers should take actions such as:

» Always use the SuccinctGateway contract with a multi-signature wallet acting as its owner.

» Actively monitor the current guardian set.

» Introduce a time delay before key operations are performed (such as changing the
allowedProvers).

Developer Response We have mitigated this by allowing individual users to manage the
whitelisted sets of provers for the functions which they own, if they prefer a custom prover set
to the ones provided by the guardians.

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

41

https://github.com/succinctlabs/succinctx/pull/310

42

A W N -

4 Vulnerability Report

4.1.27 V-SCT-VUL-027: Contracts: All _callbackAddresses permitted

Warning abd4336
Data Validation Fixed
contracts/src/SuccinctGateway.sol
fulfillCall(), fulfillCallback()

Confirmed Fix At https://github.com/succinctlabs/succinctx/pull/319

The fulfillCall() and fulfillCallback() functions are used by provers to complete submitted
requests once verification has passed.

// Execute the callback.
isCallback = true;
(bool status,) =
_callbackAddress.call(abi.encodeWithSelector(_callbackSelector, _output, _context

));
isCallback = false;

Snippet 4.28: Snippet from fulfillCallback() invoking the user-requested _callbackAddress.

While requestCallback() endpoint sets the _callbackAddress to msg.sender, a requestCall may
request a call to any address.

Further, for many reasons, a fulfillCallback() may be invoked on an unexpected address. For
example

1. An error in off-chain prover code may lead to calling the wrong address.

2. A malicious prover (see V-SCT-VUL-026) may invoke arbitrary addresses/functions.

3. A user may set the _entryAddress of a requestCall() to the address of the SuccinctGateway
itself, causing the SuccinctGateway contract itself to call requestCallback().

Impact Depending on future features added to the contract, its future holdings in other
on-chain assets, or assumptions other contracts make about the SuccinctGateway’s behavior,
unexpected behavior may occur.

Note that the impact is limited by the fact that these callbacks cannot send ether, and under
normal operation conditions no other digital assets are owned by the contract.

Recommendation Allow whitelisting or blacklisting of callback addresses.

Developer Response We have made the contracts non-upgradeable.

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

https://github.com/succinctlabs/succinctx/pull/319

4.1 Detailed Description of Issues

4.1.28 V-SCT-VUL-028: Replace GoldilocksHashOut size with named constant

Info 8955201
Maintainability Fixed
poseidon/goldilocks.go, challenger/challenger.go
type GoldilocksHashOut, GetHash()

7e7ata

The definition of GoldilocksHashOut does not use a named constant value to define the length
of the underlying variable array.

Impact This leads to minor maintainability issues, such as having to propagate a hard-coded
constant to other locations, such as GetHash () in challenger/challenger.go:

func (c *Chip) GetHash() poseidon.GoldilocksHashOut {

return [4]gl.Variable{c.GetChallenge(), c.GetChallenge(), c.GetChallenge(), c
.GetChallenge()}

-

Recommendation Use a named constant value to refer to the length of the GoldilocksHashOut
type.

Developer Response We applied the recommended fix.

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

43

44

N o AW N =

© o

10
11
12
13
14

4 Vulnerability Report

4.1.29 V-SCT-VUL-029: Type error in bn254’s HashOrNoop()

Info 8955201
Maintainability Fixed
poseidon/bn254.go
HashOrNoop()

1047169

In HashOrNoop, the inputElement argument to api.MulAcc has an incorrect type. api.MulAcc
expects a frontend.Variable, but inputElement has type goldilocks.Variable

func (c *BN254Chip) HashOrNoop(input []gl.Variable) BN254HashOut {
if len(input) <= 3 {
returnVal := frontend.Variable(0)

alpha := new(big.Int).SetInt64(1 << 32)
for i, inputElement := range input {
returnVal = c.api.MulAcc(returnVal, inputElement, alpha.Exp(alpha, big.
NewInt(int64(i)), nil))
}

return BN254HashOut(returnVal)
} else {
return c.HashNoPad(input)

}

-

Snippet 4.29: Snippet from poseidon/bn254.go

Impact This results in a circuit compilation error whenever input has length less than or equal
to 3.

parsing circuit error="
goldilocks.Variable to big.Int not supported
frontend.parseCircuit. func2
compile.go:118
utils.FromInterface
convert.go:86

Recommendation Modify inputElement to inputElement.Limb.

Developer Response We applied the recommended fix.

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

v A W N =

4.1 Detailed Description of Issues 45

4.1.30 V-SCT-VUL-030: Non-std range-check used

Severity @i 89b5a01
83418 Maintainability Fixed
File(s) goldilocks/base.go
Location(s) type Chip
Confirmed Fix At https:
//github.com/succinctlabs/gnark-plonky2-verifier/pull/47

The goldilocks base Chip uses frontend.Rangechecker for range checks.

// The chip used for Goldilocks field operations.
type Chip struct {

api frontend.API

rangeChecker frontend.Rangechecker

-

Snippet 4.30: Type declaration of goldilocks Chip.

The Gnark documentation for frontend.Rangechecker recommends:

Users should instead use github.com/consensys/gnark/std /rangecheck package
which automatically chooses most optimal method for range checking the variables.

Impact Certain compilers may not support this implementation.

Recommendation Use std.rangecheck instead of frontend.Rangechecker.

Developer Response We applied the recommended fix.

Updated Veridise Response Duetoissuehttps://github.com/advisories/GHSA-rjjm-x32p-m3f7
(seealsohttps://github.com/Consensys/gnark/issues/897 and https://github.com/Consensys/gnark/com
we additionally recommend that the developers either wait for gnark version 0.9.2 or manually

verify that this will not be an issue by adding additional checks at circuit compilation time.

Updated Developer Response We have added additional checks to ensure that the comparison
performed is precise, even in the presence of the referenced issue.

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

https://github.com/succinctlabs/gnark-plonky2-verifier/pull/47
https://github.com/succinctlabs/gnark-plonky2-verifier/pull/47
https://github.com/Consensys/gnark/tree/master/std/rangecheck
https://pkg.go.dev/github.com/consensys/gnark@v0.9.1/std/rangecheck
https://github.com/advisories/GHSA-rjjm-x32p-m3f7
https://github.com/Consensys/gnark/issues/897
https://github.com/Consensys/gnark/commit/f528807119e9443df94b8c01fe8ee65abe3c75d8

46 4 Vulnerability Report

4.1.31 V-SCT-VUL-031: Various out-of-date comments and documentation

Info 89b5a01
Maintainability Fixed
See issue description

See issue description

P256cas

The following locations have out-of-date comments and documentation:

» fri/fri.go: Comment in assertlLeadingZeros references non-existent variables from the
reference implementation (leading_zeros; should instead reference Proof0fWorkBits).

» go.mod: Says that the required go version is 1.19, but the README says to use go version
1.20.1+.

» goldilocks/base.go: the comments of functions Add, AddNoReduce, Sub, SubNoReduce, Mul,
MulNoReduce, MulAdd, MulAddNoReduce are out of date, and some are incorrect (argument
names mismatched, incorrect arguments used, etc.).

» goldilocks/quadratic_extensions.go:the documentation claims that the function SubMulExtension
constrains a, b, csuchthatres = axb - c. However, the function introduces constraints
for res = (a - b)xc.

> goldilocks/quadratic_extensions.go: the documentation claims that the function Lookup2
is similar to gnark’s Select2 and that it operates on a variable. However, the function in
gnark is actually also called Lookup2, and it operates on two variables.

» plonk/gates/reducing_extension_gate.go:the commentindeserializeReducingExtensionGate
is copied from ReducingGate.

> plonk/gates/random_access_gate.go: lines 153-154, the comment claims that the added
constrained are bx - (by - y) but the implementation adds by - (bx - x).

Impact This can introduce bugs in future versions of the codebase when new developers
mistakenly use the function for what the documentation is claiming.

Recommendation Update the documentation to reflect current the implementation.

Developer Response We applied the recommended fix.

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

https://github.com/succinctlabs/gnark-plonky2-verifier/blob/89b5a01e4b4be8a439e28b864e36e0bb5b512207/fri/fri.go#L76

4.1 Detailed Description of Issues

4.1.32 V-SCT-VUL-032: Typos in code

Confirmed Fix At deOff4f

The codebase contains a few minor typos, listed below.

zetaNextBath in fri/fri.go.
If the bit is on (should be "one") in fri/fri.go.

Info
Maintainability Fixed
See issue description
See issue description

89b5all

aritheticExtensionGateRegex in plonk/gates/arithmetic_extension_gate.go.

>
>
» panic("len(evals) ! arity") (should be "!=") in fri/fri.go.
| 4
>

aritheticGateRegex in plonk/gates/arithmetic_extension.go.

Developer Response We applied the recommended fix.

Veridise Audit Report: gnark-plonky2-verifier

© 2023 Veridise Inc.

47

https://github.com/succinctlabs/gnark-plonky2-verifier/blob/89b5a01e4b4be8a439e28b864e36e0bb5b512207/fri/fri.go#L52
https://github.com/succinctlabs/gnark-plonky2-verifier/blob/89b5a01e4b4be8a439e28b864e36e0bb5b512207/fri/fri.go#L165
https://github.com/succinctlabs/gnark-plonky2-verifier/blob/89b5a01e4b4be8a439e28b864e36e0bb5b512207/fri/fri.go#L315
https://github.com/succinctlabs/gnark-plonky2-verifier/blob/89b5a01e4b4be8a439e28b864e36e0bb5b512207/plonk/gates/arithmetic_extension_gate.go#L12
https://github.com/succinctlabs/gnark-plonky2-verifier/blob/89b5a01e4b4be8a439e28b864e36e0bb5b512207/plonk/gates/arithmetic_gate.go#L12

48 4 Vulnerability Report

4.1.33 V-SCT-VUL-033: Ignored gate parameters

Info 895201
Maintainability Fixed

File(s) plonk/gates/{exponentiation_gate.go,
random_access_gate.go}
Location(s) exponentiationGateRegex, randomAccessGateRegex

Confirmed Fix At 06f91e4

Both the ExponentiationGate and RandomAccessGate capture a base parameter (corresponding
to constant D) while deserializing the gate parameters. This parameter is then unused.

1|var exponentiationGateRegex = regexp.MustCompile("ExponentiationGate { num_power_bits

(?P<numPowerBits>[0-9]+), _phantom: PhantomData<plonky2_ field::goldilocks_field
::GoldilocksField> }<D=(?P<base>[0-9]+)>"

Snippet 4.31: Example regex from exponentiation_gate.go.

Impact These ignored parameters may become an issue down the road if they no longer match
the assumptions in the codebase.

Recommendation Either check that parameters["base"] matches the current assumptions

of the codebase (i.e., parameters["base"] == gl.D), or add documentation explaining why
checking parameters["base"] is unnecessary.

Developer Response We applied the recommended fix.

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

4.1 Detailed Description of Issues

4.1.34 V-SCT-VUL-034: Hard-coded constants in code

Info 89b5a01
Maintainability Fixed
See issue description

See issue description

e3et27

Certain parts of the code use hard-coded values rather than relying on global constants.

» plonk/gates/poseidon_mds_gate.go

* In EvalUnfiltered(), a quadratic extension variable is constrained to be zero.

1|diff := glApi.SubExtensionAlgebra(output, computed_outputs[i])
2| constraints = append(constraints, diff[0], diff[1])

Snippet 4.32: Snippet from EvalUnfiltered()

If the extension degree is ever changed to be larger than 2, this will only constrain
the first two components. As implemented elsewhere in the code, the preferred way
to constrain a QuadraticExtensionVariable to be zero is to use a loop with bound
gl.D.

» plonk/gates/public_input_gate.go

* InEvalUnfiltered(), a loop uses a hardcoded constant for iterating over wires and
hash values rather than iterating over the total number of wires (i.e., len(wires)).
This could be problematic if the gate is ever modified to take a different number of
input wires.

1(for i :=0; i < 4; i++ {

2 wire := wires[i]

3 hash_part := hash_parts[i]
4

5|}

Snippet 4.33: Snippet from EvalUnfiltered()

Impact If these constants change in the future, these implementations will become incorrect.
Recommendation Use the applicable constant.

Developer Response We applied the recommended fix.

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

49

50

4 Vulnerability Report

4.1.35 V-SCT-VUL-035: No assertion that gnark is using BN254

Info 8955201
Maintainability Fixed
poseidon/bn254.go
NewBN254Chip()

1951161

The BN254 Poseidon chip computes the Poseidon hash function over the BN254 scalar field.
The implementation assumes the underlying field is the scalar field for BN254.

However, gnark supports several other fields, any of which may be used when compiling the
constraints.

Impact If the incorrect field is used, the BN254 chip will no longer be computing a Poseidon
hash over the BN254 field.

Recommendation Consider adding a check to NewBN254Chip() to ensure the api.Compiler().
Field() is as expected.

Developer Response We applied the recommended fix.

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

https://docs.gnark.consensys.net/Concepts/schemes_curves#bn254-and-bls12-381-curves

o U~ W N R

4.1 Detailed Description of Issues

4.1.36 V-SCT-VUL-036: Inaccurate bounds-check on numConsts

Info 89b5a01
Data Validation Fixed
plonk/gates/constant_gate.go
ConstInput(), WireOutput()
9e608b

In both the ConstInput and WireOutput function, the input argument is checked to ensure it is
not greater than the number of constants.

func (g *ConstantGate) ConstInput(i uint64) uint64 {
if i > g.numConsts {
panic("Invalid constant index")
}
return i
}

Snippet 4.34: Definition of ConstInput().

However, since the return value is used as an array index into an array of size g.numConsts,
i should be checked to ensure it is not greater than or equal to g.numConsts (i.e., if i >= g.
numConsts).

Impact This could lead to an array out of bounds error if i == g.numConsts.

Recommendation Update the check on i tobe i >= g.numConsts.

Developer Response We applied the recommended fix.

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

51

52 4 Vulnerability Report

4.1.37 V-SCT-VUL-037: Sub-optimal sub-expression in random access gate

Info 8955201
Constraint Optimization Fixed
plonk/gates/random_access_gate.go
EvalUnfiltered()

8567133

The EvalUnfiltered function of the random access gate creates sub-optimal expressions while

building the constraints. Specifically, for every two consecutive elements (x, y) inslice listItenms,
EvalUnfiltered creates the expression by - (bx - x). However, this can be simplified to x + b(
y - x), which has one fewer operation.

3
=
—
=
Il

glApi.MulExtension(b, x)
glApi.SubExtension(mull, x)

n
c
o
iy
Il

glApi.MulExtension(b, y)
glApi.SubExtension(mul2, subl)

N o A WwN =
n 3
c c
o ~
NN
o

listItemsTmp = append(listItemsTmp, sub2)

Snippet 4.35: Snippet from EvalUnfiltered

Impact Since every sub-expression will add several constraints, this logic will yield a sub-
optimal overall circuit.

Recommendation We recommend simplifying the sub-expressions to x + b(y - x).

Developer Response We applied the recommended fix.

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

© 00 N O U W N

==
= ©

© 0 N O U R W N

=
(o)

4.1 Detailed Description of Issues 53

4.1.38 V-SCT-VUL-038: Contracts: Code Recommendations

Severity i abd4356
834 L8 Maintainability Fixed

File(s) contracts/src/FunctionRegistry.sol
Location(s) FunctionRegistry
Confirmed Fix At https://github.com/succinctlabs/succinctx/pull/315;https:
//g9ithub.com/succinctlabs/succinctx/pull/314

1. FunctionRegistry implements the IFunctionRegistry interface, but does not mark the
functions as override.

2. FunctionRegistry contains several functions with similar functionality. For instance,
registerFunction() registers a function, while deployAndRegisterFunction() first deploys
a contract, and then registers it. As can be seen in the below snippet, the functions are
nearly identical.

functionId = getFunctionId(_owner, _salt);
if (address(verifiers[functionId]) != address(0)) {
revert FunctionAlreadyRegistered(functionId); // should call update instead
}
if (_verifier == address(0)) {
revert VerifierCannotBeZero();
}
verifierOwners[functionId] = _owner;
verifiers[functionId] = _verifier;

emit FunctionRegistered(functionId, _verifier, _salt, _owner);

Snippet 4.36: Definition of registerFunction()

functionId = getFunctionId(_owner, _salt);
if (address(verifiers[functionId]) != address(0)) {
revert FunctionAlreadyRegistered(functionId); // should call update instead

-

verifierOwners|[functionId] = _owner;
verifier = _deploy(_bytecode, functionId);
verifiers[functionId] = verifier;

emit FunctionRegistered(functionId, verifier, _salt, _owner);

Snippet 4.37: Definition of deployAndRegisterFunction()

There is similar duplication between updateFunction() and deployAndUpdateFunction().

Impact

1. If a function is ever deleted from the interface, the corresponding change may be forgotten
in the FunctionRegistry contract.

2. Changes to the code may be made in only one function, leading to errors or inconsistencies
down the road.

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

https://github.com/succinctlabs/succinctx/pull/315; https://github.com/succinctlabs/succinctx/pull/314
https://github.com/succinctlabs/succinctx/pull/315; https://github.com/succinctlabs/succinctx/pull/314

54 4 Vulnerability Report

Recommendation Label the functions as overridden and remove the code duplication.

Developer Response

1. Functions marked as override in SuccinctGateway and FunctionRegistry.
2. Common functionality moved into internal _register() and _update() functions.

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

4.1 Detailed Description of Issues

4.1.39 V-SCT-VUL-039: Contracts: Possible Wasted Gas

Info abd4356
Gas Optimization Fixed

File(s) contracts/src/FunctionRegistry.sol,
contracts/src/SuccinctGateway.sol
Location(s) See Issue Description

(@il @:\ll https://github.com/succinctlabs/succinctx/pull/313, https:
//github.com/succinctlabs/succinctx/pull/315

When a user submits a transaction to the Ethereum blockchain for processing, they specify the
maximum gas fee they are willing to pay. The complexity of the computation in the transaction
determines the amount of gas used to process the transaction.

1. The Solidity language provides the delete keyword to reset variables to the default value
for the data type. Using the delete keyword also refunds a small amount of the gas
fee spent on the transaction. The SuccinctGateway. removeProver() function could use
delete allowedProvers[_prover] instead of allowedProvers[_prover] = false since the
default value for the bool data type is false.

2. To save on gas fees in the case where a transaction reverts, it is best for the conditions that
could cause a revert to be checked as soon as possible. The FunctionRegistry contract has
two functions where the revert-case gas cost could be optimized by checking the simpler
_verifier == address(0) condition before computing the functionId.

functionIld = getFunctionId(_owner, _name);
if (address(verifiers[functionId]) !'= address(0)) {
revert FunctionAlreadyRegistered(functionId); // should call update instead
}
if (_verifier == address(0)) {
revert VerifierCannotBeZero();

-

Snippet 4.38: Snippet from FunctionRegistry.registerFunction()

functionIld = getFunctionId(msg.sender, _name);
if (msg.sender != verifierOwners[functionId]) {
revert NotFunctionOwner(msg.sender, verifierOwners[functionId]);
}
if (_verifier == address(0)) {
revert VerifierCannotBeZero();

-

Snippet 4.39: Snippet from FunctionRegistry.updateFunction()

3. The addProver() and removeProver () functions in the SuccinctGateway contract are used to
manage the addresses in the allowedProvers map by adding/removing the given address.
The presence or absence of address (0) in the allowedProvers map has no meaningful effect.
Thus, both functions could allow users to avoid spurious executions before submitting
the transaction by reverting when _prover == address(0).

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

55

https://github.com/succinctlabs/succinctx/pull/313, https://github.com/succinctlabs/succinctx/pull/315
https://github.com/succinctlabs/succinctx/pull/313, https://github.com/succinctlabs/succinctx/pull/315

56 4 Vulnerability Report

1| function addProver(address _prover) external onlyGuardian {
2 allowedProvers[_prover] = true;
3 emit ProverUpdated(_prover, true);
40}
Snippet 4.40: Definition of SuccinctGateway.addProver(). removeProver() is similar.
1|[modifier onlyProver() {
2 if (!allowedProvers[msg.sender]) {
3 revert OnlyProver(msg.sender);
4 1
5 -
6|}
Snippet 4.41: Definition of SuccinctGateway.onlyProver () modifier
Impact Higher than necessary gas fees may be required in several functions.
Recommendation

1. InSuccinctGateway. removeProver(),replaceallowedProvers[_prover] = falsewithdelete
allowedProvers[_prover].
2. InFunctionRegistry.registerFunction() and FunctionRegistry.updateFunction(), move
the _verifier == address(0) check to the start of the function.
3. InSuccinctGateway.addProver() and SuccinctGateway.removeProver () add a condition to
revert if _prover == address(0).

Developer Response

1. We applied recommendation.

2. We applied recommendation.

3. The addProver() and removeProver() functions were removed from SuccinctGateway in
https://github.com/succinctlabs/succinctx/pull/310andreplaced with addCustomProver
(), addDefaultProver(), removeCustomProver(), and removeDefaultProver(). However,
none of these functions require the condition _prover != address(0).

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

https://github.com/succinctlabs/succinctx/pull/310

& Fuzz Testing

5.1 Methodology

Veridise auditors set out to fuzz test the witness generation in gnark-plonky?2-verifier to increase
confidence in its implementation and gain greater assurance in the correctness of constraints
which have been determined (by manual review) to match the witness generator. These fuzz
tests focused on functional correctness i.e, whether the implementation deviates from the
intended behavior.

The auditors primarily performed differential fuzzing-running an alternative implementation
on the same inputs and then comparing the results. Some of these alternative implementa-
tions were hand-crafted to match the desired behavior, and others were taken from popu-
lar repositories such as https://github.com/iden3/circomlib and https://github.com/
iden3/go-iden3-crypto. See section (5.3) for more details.

5.2 Properties Fuzzed

Table 5.1 describes the invariants we fuzz-tested. The second column states which component
(e.g., correct emulation of addition in the Goldilocks field) the invariant is associated with. The
third shows the total amount of compute time spent fuzzing this property. The last column
notes whether we found a bug when fuzzing the invariant (X indicates no bug was found and
v/ means fuzzing this invariant revealed a bug).

The Veridise auditors devoted a total of 303 compute-hours to fuzzing this protocol, identifying
a total of 0 bugs.

Table 5.1: Invariants Fuzzed.

Specification Minuie Fuzzed Bz Found

V-SCT-SPEC-001

Spec: base — Add

V-SCT-SPEC-002 Spec: base — Exp 120 X
V-SCT-SPEC-003 Spec: base — Inverse 120 X
V-SCT-SPEC-004 Spec: base — Mul 120 X
V-SCT-SPEC-005 Spec: base — MulAdd 120 X
V-SCT-SPEC-006 Spec: base — RangeCheck 60 X
V-SCT-SPEC-007 Spec: base — Reduce 120 X
V-SCT-SPEC-008 Spec: poseidon — bn254 8000 X
V-SCT-SPEC-009 Spec: poseidon — goldilocks 8000 X
V-SCT-SPEC-010 Spec: quadratic_extension — AddExtension 120 X
V-SCT-SPEC-011 Spec: quadratic_extension — ExpExtension 120 X
V-SCT-SPEC-012 Spec: quadratic_extension — InnerProductExten 120 X
V-SCT-SPEC-013 Spec: quadratic_extension — InverseExtension 120 X
V-SCT-SPEC-014 Spec: quadratic_extension — IsZero 120 X
V-SCT-SPEC-015 Spec: quadratic_extension — Lookup 120 X
V-SCT-SPEC-016 Spec: quadratic_extension — Lookup?2 120 X
Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

https://github.com/iden3/circomlib
https://github.com/iden3/go-iden3-crypto
https://github.com/iden3/go-iden3-crypto

58 5 Fuzz Testing

V-SCT-SPEC-017 Spec: quadratic_extension — MulAddExtension 120
V-SCT-SPEC-018 Spec: quadratic_extension — MulExtension 120
V-SCT-SPEC-019 Spec: quadratic_extension — ScalarMulExtensio 120
V-SCT-SPEC-020 Spec: quadratic_extension — SubExtension 120
V-SCT-SPEC-021 Spec: quadratic_extension — SubMulExtension 120

> X X X X

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

5.3 Detailed Description of Fuzzed Specifications

5.3 Detailed Description of Fuzzed Specifications

In the rest of this section, M denotes the Goldilocks prime.

5.3.1 V-SCT-SPEC-001: Spec: base — Add

Minutes Fuzzed [g¥dl Bugs Found U

Natural Language We fuzzed the witness generation for the Add() function in goldilocks/
base.go. We tested for functional correctness by computing the expected value in a separate Go
function and comparing the two results.

Formal Specification We checked the output of Add satisfies the below formula.

Add(x,y)=(x +y) mod M.

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

59

60 5 Fuzz Testing

5.3.2 V-SCT-SPEC-002: Spec: base — Exp

Minutes Fuzzed ¥l Bugs Found U

Natural Language We fuzzed the witness generation for the Exp() function in goldilocks/
base.go. We tested for functional correctness by computing the expected value in a separate
Go function and comparing the two results. We in particular use a naive exponentiation by
squaring to implement the Go function.

Formal Specification We checked the output of Exp satisfies the below formula.

Exp(x,n)=x" mod M.

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

5.3 Detailed Description of Fuzzed Specifications

5.3.3 V-SCT-SPEC-003: Spec: base — Inverse

Minutes Fuzzed ¥l Bugs Found U

Natural Language We fuzzed the witness generation for the Inverse() function in goldilocks
/base.go. We tested for functional correctness by computing the expected value in a separate
Go function and comparing the two results. We in particular use a naive exponentiation by
squaring to implement the Go function.

Formal Specification We checked the output of Inverse satisfies the below formula.
Inverse(x) = y such that xy mod M = 1.

But to actually compute 1, we use Fermat'’s little theorem:

xM=x (mod M)

xM2 =71 (mod M)

where we use exponentiation by squaring for efficiency.

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

61

62 5 Fuzz Testing

5.3.4 V-SCT-SPEC-004: Spec: base — Mul

Minutes Fuzzed ¥l Bugs Found U

Natural Language We fuzzed the witness generation for the Mul() function in goldilocks/
base.go. We tested for functional correctness by computing the expected value in a separate Go
function and comparing the two results.

Formal Specification We checked the output of Mul satisfies the below formula.

Mul(x, y) = (x - y) mod M.

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

5.3 Detailed Description of Fuzzed Specifications

5.3.5 V-SCT-SPEC-005: Spec: base — MulAdd

Minutes Fuzzed ¥l Bugs Found U

Natural Language We fuzzed the witness generation for the MulAdd () function in goldilocks/
base.go. We tested for functional correctness by computing the expected value in a separate Go
function and comparing the two results.

Formal Specification We checked the output of MulAdd satisfies the below formula.

MulAdd(x, y,z) = ((x - y) + z) mod M.

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

63

64 5 Fuzz Testing

5.3.6 V-SCT-SPEC-006: Spec: base — RangeCheck

Natural Language We fuzzed the witness generation for the RangeCheck() function in
goldilocks/base.go. We tested for functional correctness by checking if the predicate is satisfied
on various inputs, using a naive comparison as a ground truth.

Formal Specification We checked the RangeCheck is equivalent the the following predicate:

RangeCheck(x) iff x < M.

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

5.3 Detailed Description of Fuzzed Specifications

5.3.7 V-SCT-SPEC-007: Spec: base — Reduce

Minutes Fuzzed ¥l Bugs Found U

Natural Language We fuzzed the witness generation for the Reduce () function in goldilocks/
base.go. We tested for functional correctness by computing the expected value in a separate Go
function and comparing the two results.

Formal Specification We checked the output of Reduce satisfies the below formula.

Reduce(x) =x mod M

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

65

66 5 Fuzz Testing

5.3.8 V-SCT-SPEC-008: Spec: poseidon — bn254

Minutes Fuzzed R4 Bugs Found U

Natural Language We fuzzed the witness generation for the Poseidon() function in poseidon/
bn254.go. We tested for functional correctness by computing the expected value using Circomlib’s
implementation at

https://github.com/iden3/circomlib/blob/cff5ab6288b55ef23602221694a6a38a0239dccO/
circuits/poseidon.circom

and comparing the two results. The Circomlib’s template is instantiated with PoseidonEx(3, 4)

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

https://github.com/iden3/circomlib/blob/cff5ab6288b55ef23602221694a6a38a0239dcc0/circuits/poseidon.circom
https://github.com/iden3/circomlib/blob/cff5ab6288b55ef23602221694a6a38a0239dcc0/circuits/poseidon.circom

5.3 Detailed Description of Fuzzed Specifications 67

5.3.9 V-SCT-SPEC-009: Spec: poseidon — goldilocks

Natural Language We fuzzed the witness generation for the Poseidon() function in poseidon
/goldilocks.go. We tested for functional correctness by computing the expected value using
Go’s implementation at

https://github.com/iden3/go-iden3-crypto/blob/3fb23d780c02f41857d62ffa04c3al12912b14761/
goldenposeidon/poseidon.go#L101

and comparing the two results. The Go function is manually modified to output 12 elements
instead of 4.

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

https://github.com/iden3/go-iden3-crypto/blob/3fb23d780c02f41857d62ffa04c3a12912b14761/goldenposeidon/poseidon.go#L101
https://github.com/iden3/go-iden3-crypto/blob/3fb23d780c02f41857d62ffa04c3a12912b14761/goldenposeidon/poseidon.go#L101

68 5 Fuzz Testing

5.3.10 V-SCT-SPEC-010: Spec: quadratic_extension — AddExtension

Natural Language We fuzzed the witness generation for the AddExtension() function in
goldilocks/quadratic_extension.go. We tested for functional correctness by computing the
expected value in a separate Go function and comparing the two results.

Formal Specification We checked the output of AddExtension satisfies the below formula.

AddExtension(a + bV7, ¢ + dV7) = ((a + ¢) mod M)+ ((b +d) mod M)V7.

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

5.3 Detailed Description of Fuzzed Specifications

5.3.11 V-SCT-SPEC-011: Spec: quadratic_extension — ExpExtension

Natural Language We fuzzed the witness generation for the ExpExtension() function in
goldilocks/quadratic_extension.go. We tested for functional correctness by computing the
expected value in a separate Go function and comparing the two results. In particular, we use a
naive exponentiation based on repeated squaring to implement the Go function.

Formal Specification We checked the output of ExpExtension satisfies the below formula.

ExpExtension(a + bV7, n) = (a + b\7)"

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

69

70 5 Fuzz Testing

5.3.12 V-SCT-SPEC-012: Spec: quadratic_extension — InnerProductExtension

Natural Language We fuzzed the witness generation for the InnerProductExtension() function
in goldilocks/quadratic_extension.go. We tested for functional correctness by computing the
expected value in a separate Go function and comparing the two results.

Formal Specification We checked the output of InnerProductExtension satisfies the below
formula.

InnerProductExtension = f

flc,a+ bV7, [(x1 + yl\ﬁ, U + vl\ﬁ}, =
((a + cxquy + 7cy1v1 + cxaup + 7cypvp +...) mod M)+

((b + cx1v1 + cyrus + cx202 + cypup +...) mod M)\ﬁ

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

5.3 Detailed Description of Fuzzed Specifications

5.3.13 V-SCT-SPEC-013: Spec: quadratic_extension — InverseExtension

Natural Language We fuzzed the witness generation for the InverseExtension() function
in goldilocks/quadratic_extension.go. We tested for functional correctness by computing the
expected value in a separate Go function and comparing the two results.

Formal Specification We checked the output of InverseExtension satisfies the below for-
mula.

InverseExtension(a +bV7) = c +dV7 such that ac+7cd =1 (mod M)Aad+bc =0 (mod M)

But to actually compute ¢ + dV7, we follow:

1 _ 1 .a—b\ﬁ_a—b\ﬁ
a+b\V7 a+bV7 a-b\7 a? —7b?

The inverse of a2 — 7b% under M can be found by using Fermat’s little theorem:

xM=x (mod M)

xM2 = x71 (mod M)

where we use exponentiation by squaring for efficiency.

Note that 2 = b = 0 is the only case where the inverse is not defined. 4> = 7b*> (mod M) doesn’t
have any other solutions.

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

71

72 5 Fuzz Testing

5.3.14 V-SCT-SPEC-014: Spec: quadratic_extension — IsZero

Minutes Fuzzed ¥l Bugs Found U

Natural Language We fuzzed the witness generation for the IsZero() function in goldilocks/
quadratic_extension.go. We tested for functional correctness by computing the expected value
in a separate Go function and comparing the two results.

Formal Specification We checked the output of IsZero satisfies the below formula.

IsZero = f where

f(a+b\/7):{1 fa=0Ab=0

0 otherwise

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

5.3 Detailed Description of Fuzzed Specifications

5.3.15 V-SCT-SPEC-015: Spec: quadratic_extension — Lookup

Minutes Fuzzed ¥l Bugs Found U

Natural Language We fuzzed the witness generation for the Lookup () function in goldilocks/
quadratic_extension.go. We tested for functional correctness by computing the expected value
in a separate Go function and comparing the two results.

Formal Specification We checked the output of Lookup satisfies the below formula.

Lookup = f where

u ifb=0

f(b,u,0) = {v ifb=1

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

73

74 5 Fuzz Testing

5.3.16 V-SCT-SPEC-016: Spec: quadratic_extension — Lookup2

Minutes Fuzzed ¥l Bugs Found U

Natural Language We fuzzed the witness generation for the Lookup2 () function in goldilocks
/quadratic_extension.go. We tested for functional correctness by computing the expected value
in a separate Go function and comparing the two results.

Formal Specification We checked the output of Lookup2 satisfies the below formula.

Lookup2 = f where

u ifby=0Ab,=0
v ifb=1Aby=0

bi,by,u,v,x,y) =
flbr, bz V=0, fh=0Aby=1
Yy fb=1Aby=1

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

5.3 Detailed Description of Fuzzed Specifications

5.3.17 V-SCT-SPEC-017: Spec: quadratic_extension — MulAddExtension

Natural Language We fuzzed the witness generation for the MulAddExtension() function in
goldilocks/quadratic_extension.go. We tested for functional correctness by computing the
expected value in a separate Go function and comparing the two results.

Formal Specification We checked the output of MulAddExtension satisfies the below formula.

MulAddExtension(a + bV7, ¢ + dV7, e + f\/7) = ((ac +7bd + e) mod M) + ((ad + bc + f)
mod M)V7.

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

75

76 5 Fuzz Testing

5.3.18 V-SCT-SPEC-018: Spec: quadratic_extension — MulExtension

Minutes Fuzzed ¥l Bugs Found U

Natural Language We fuzzed the witness generation for the MulExtension() function in
goldilocks/quadratic_extension.go. We tested for functional correctness by computing the
expected value in a separate Go function and comparing the two results.

Formal Specification We checked the output of MulExtension satisfies the below formula.

MulExtension(a + b¥7, ¢ + dV7) = ((ac + 7bd) mod M) + ((ad + bc) mod M)V7.

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

5.3 Detailed Description of Fuzzed Specifications

5.3.19 V-SCT-SPEC-019: Spec: quadratic_extension — ScalarMulExtension

Natural Language We fuzzed the witness generation for the ScalarMulExtension() function
in goldilocks/quadratic_extension.go. We tested for functional correctness by computing the
expected value in a separate Go function and comparing the two results.

Formal Specification We checked the output of ScalarMulExtension satisfies the below for-
mula.

ScalarMulExtension(a + bV7, ¢) = (ac mod M) + (bc mod M)V7.

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

77

78 5 Fuzz Testing

5.3.20 V-SCT-SPEC-020: Spec: quadratic_extension — SubExtension

Minutes Fuzzed ¥l Bugs Found U

Natural Language We fuzzed the witness generation for the SubExtension() function in
goldilocks/quadratic_extension.go. We tested for functional correctness by computing the
expected value in a separate Go function and comparing the two results.

Formal Specification We checked the output of SubExtension satisfies the below formula.

SubExtension(a + bV7, ¢ + dV7) = ((a — ¢ + M) mod M) + (b —d + M) mod M)V7.

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

5.3 Detailed Description of Fuzzed Specifications

5.3.21 V-SCT-SPEC-021: Spec: quadratic_extension — SubMulExtension

Minutes Fuzzed ¥l Bugs Found U

Natural Language We fuzzed the witness generation for the SubMulExtension() function in
goldilocks/quadratic_extension.go. We tested for functional correctness by computing the
expected value in a separate Go function and comparing the two results.

Formal Specification We checked the output of SubMulExtension satisfies the below formula.
SubMulExtension(a +bV7, c+dV7, e +f\/7) =((xe+7yf) mod M)+((xf+ye) mod M)V7
where x = ((a —c+ M) mod M)andy = (b —d + M) mod M.

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

79

& Formal Verification

6.1 Formal Verification Procedure

Our team verified several properties of the code. See Table 6.1 for a complete list.

We formally verified the code using Veridise’s tool Picus. Picus is an open-source library
that can be used to prove that zero-knowledge circuits are properly constrained* by formally
verifying they have exactly one solution or find a counterexample if the circuits are not properly
constrained. It implements this by a novel interaction between static analysis and SMT solvers.

Veridise auditors ran Picus on several key functions. The effort focused on the Goldilocks field
emulation as most of the codebase depends on that module, and the most severe issues were
identified in that region of the code (see V-SCT-VUL-001, V-SCT-VUL-002, and V-SCT-VUL-003).
They also ran the tool on the quadratic extension, quadratic extension algebra, and Poseidon
hash (both BN254 and Goldilocks).

To improve scalability, we modeled some constraints with a formula that can be directly reasoned
with by SMT solvers. For example, we modeled several range checking constraints by replacing
them with a simple inequality assertion.

Furthermore, identified under-constrained circuits (Subsections 4.1.1 to 4.1.3) could cause other
circuits that include the under-constrained circuits as sub-circuits to become under-constrained
as well, resulting in redundant reports. We made a fix to these under-constrained circuits first
before proceeding to verify other circuits.

6.2 Properties Verified

A complete list of the properties verified is shown in Table 6.1. Each row displays a natural
language description of the property proved, and its current status (i.e. verified, not verified).

Table 6.1: Formally verified properties.

Determinism of MulAdd .
VASEIHRIH S File: goldilocks/base.go Wathizd

V-SCT-FSPEC-002 D.etermml.sm of ReduceWithMaxBits Unknown'
File: goldilocks/base.go

Determinism of Exp

File: goldilocks/base.go

Determinism of Inverse
-SCT-FSPEC-004 ified*

V-SCT-FSPEC-00 File: goldilocks/base.go el s)

Determinism of AddExtension

NEECIREIHAC U File: goldilocks/quadratic_extension.go ViEalitE

V-SCT-FSPEC-003 Verified

* In this context, properly constrained means not under-constrained.
* Discovered to be not verified manually — see Subsection 4.1.3
tSee Subsection 4.1.1

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

https://github.com/Veridise/Picus

82

6 Formal Verification

Determinism of SubExtension

V-SCT-FSPEC-006 File: goldilocks/quadratic_extension.go Verified

V-SCT-FSPEC-007 D.etermml.sm of MulExtens.lon . Verified
File: goldilocks/quadratic_extension.go

V-SCT-FSPEC-008 D.etermlmlsm of MulAdd Ext.en51on . Verified
File: goldilocks/quadratic_extension.go

V-SCT-FSPEC-009 D.etermlmlsm of SubMulExt.ensmn . Verified
File: goldilocks/quadratic_extension.go

V-SCT-FSPEC-010 D'etermlnlism of Scala rMul.Extensmnl Verified
File: goldilocks/quadratic_extension.go

V-SCT-FSPEC-011 D.etermlmlsm of InnerP rod.uctExtensllon Verified
File: goldilocks/quadratic_extension.go

V-SCT-FSPEC-012 D.etermml.sm of Inve rseEx.tensmn . Verified
File: goldilocks/quadratic_extension.go

V-SCT-FSPEC-013 D.etermlmlsm of D1vExtens.10n . Verified
File: goldilocks/quadratic_extension.go

V-SCT-FSPEC-014 D.etermlmlsm of ExpExtens.lon . Verified
File: goldilocks/quadratic_extension.go
Determinism of ReduceExtension .

V-SCT-FSPEC-015 _. . . . Verified
File: goldilocks/quadratic_extension.go

V-SCT-FSPEC-016 D.etermlmlsm of ReduceW1t. hPowers . Verified
File: goldilocks/quadratic_extension.go

V-SCT-FSPEC-o1y Determinismof Iszero , Verified
File: goldilocks/quadratic_extension.go

V-SCT-FSPEC-01g Determinism of Lookup , Verified
File: goldilocks/quadratic_extension.go

V-SCT-FSPEC-019 Loterminism of Lookup2 | Verified
File: goldilocks/quadratic_extension.go

V-SCT-FSPEC-020 D'etermml'sm of MulExtens.lonAlgebrla Verified
File: goldilocks/quadratic_extension_algebra.go

V-SCT-FSPEC-021 Determinism of PartialInterpolateExtAlgebra Verified

File: goldilocks/quadratic_extension_algebra.go

Determinism of Poseidon "
V-SCT-FSPEC-022 File: poseidon/bn254.go Verified

Determinism of HashNoPad o
WASEIHRSFRCAD File: poseidon/bn254.go Viemtie)

Determinism of HashOrNoOp
File: poseidon/bn254.go

Determinism of TwoToOne e
V-SCT-FSPEC-025 File: poseidon/bn254.go Verified

Determinism of ToVec
V-SCT-FSPEC-026 File: poseidon/bn254.go

Determinism of Poseidon
V-SCT-FSPEC-027
SCIHEEIHEC File: poseidon/goldilocks.go

V-SCT-FSPEC-024 Crashed$

Unknown

Unknown

§ See Subsection 4.1.29

© 2023 Veridise Inc. Veridise Audit Report: gnark-plonky?2-verifier

%5 Glossary

Fast Reed-Solomon IOPPs A transparent, succinct argument to prove [1, 2] a committed func-
tion is near a polynomial of low-degree. This is frequently used to produce a polynomial
commitment scheme. See https://vitalik.ca/general/2017/11/22/starks_part_2.
html for more details . 5, 83

FRI Fast Reed-Solomon IOPPs. 83

gnark A framework for zero-knowledge circuits. See https://docs.gnark.consensys.net to
learn more . 1

Go An open-source language supported by Google popular in the blockchain ecosystem. See
https://go.dev to learn more. 1, 6

Goldilocks Field The 64-bit field used in plonky?2. 2, 5

PLONK An arithmetization strategy for zero-knowledge circuits developed in [3]. See [4] or
https://vitalik.ca/general/2019/09/22/plonk.html for more details. 5, 83

PLONKIish A catch-all term for arithmetization strategies for zero-knowledge circuits based
off of PLONK, but slightly generalized (typically to handle more gates or a different
polynomial commitment). For more details, see https://docs.zkproof.org/pages/
standards/accepted-workshop3/proposal-turbo_plonk.pdf. 83

plonky2 A PLONK:ish arithmetization developed by Polygon Zero with various optimizations
and FRI as the polynomial commitment scheme. See https://github.com/0xPolygonZero/
plonky2/ for more details . 1, 83

Satisfiability Modulo Theories The problem of determining whether a certain mathematical
statement has any solutions. SMT solvers attempt to do this automatically. See https:
//en.wikipedia.org/wiki/Satisfiability_modulo_theories tolearn more . 83

smart contract A self-executing contract with the terms directly written into code. Hosted on a
blockchain, it automatically enforces and executes the terms of an agreement between
buyer and seller. Smart contracts are transparent, tamper-proof, and eliminate the need
for intermediaries, making transactions more efficient and secure.. 1, 83

SMT Satisfiability Modulo Theories. 81

Solidity The standard high-level language used to develop smart contracts on the Ethereum
blockchain. See https://docs.soliditylang.org/en/v0.8.19/ to learn more. 1

zero-knowledge circuit A cryptographic construct that allows a prover to demonstrate to a
verifier that a certain statement is true, without revealing any specific information about
the statement itself. See https://en.wikipedia.org/wiki/Zero-knowledge_proof for
more . 5, 83

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

https://vitalik.ca/general/2017/11/22/starks_part_2.html
https://vitalik.ca/general/2017/11/22/starks_part_2.html
https://docs.gnark.consensys.net
https://go.dev
https://vitalik.ca/general/2019/09/22/plonk.html
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://github.com/0xPolygonZero/plonky2/
https://github.com/0xPolygonZero/plonky2/
https://en.wikipedia.org/wiki/Satisfiability_modulo_theories
https://en.wikipedia.org/wiki/Satisfiability_modulo_theories
https://docs.soliditylang.org/en/v0.8.19/
https://en.wikipedia.org/wiki/Zero-knowledge_proof

& Bibliography

[1] Eli Ben-Sasson et al. ‘Fast Reed-Solomon Interactive Oracle Proofs of Proximity’. In: Electron.
Colloquium Comput. Complex. 2017 (cited on page 83).

[2] Eli Ben-Sasson et al. DEEP-FRI: Sampling Outside the Box Improves Soundness. Cryptology
ePrint Archive, Paper 2019/336. https : //eprint . iacr.org/2019/336. 2019. UrL:
https://eprint.iacr.org/2019/336 (cited on page 83).

[3] Ariel Gabizon, Zachary J. Williamson, and Oana-Madalina Ciobotaru. ‘PLONK: Permuta-
tions over Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge’. In:
IACR Cryptol. ePrint Arch. 2019 (2019), p. 953 (cited on page 83).

[4] Justin Thaler. ‘Proofs, Arguments, and Zero-Knowledge’. In: Foundations and Trends® in
Privacy and Security 4.2-4 (2022), pp. 117-660. por: 10.1561/3300000030 (cited on page 83).

Veridise Audit Report: gnark-plonky2-verifier © 2023 Veridise Inc.

https://eprint.iacr.org/2019/336
https://eprint.iacr.org/2019/336
https://doi.org/10.1561/3300000030

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-SCT-VUL-001: inverse missing range check
	V-SCT-VUL-002: Unconstrained variable in Reduce()
	V-SCT-VUL-003: Unconstrained variable in ReduceWithMaxBits()
	V-SCT-VUL-004: MulAdd() may mutate arguments
	V-SCT-VUL-005: Missing range-check on EvalProofs
	V-SCT-VUL-006: Contracts: funds may be locked when feeVault is disabled
	V-SCT-VUL-007: FRI Parameter Ignored During Loading
	V-SCT-VUL-008: interpolate() over-constrained
	V-SCT-VUL-009: ArityBits = 8 will provoke errors
	V-SCT-VUL-010: alpha value overwritten to 1
	V-SCT-VUL-011: Bitpacking operation may lead to overlap
	V-SCT-VUL-012: evalL0 overconstrained
	V-SCT-VUL-013: Salted evaluation not considered
	V-SCT-VUL-014: Index calculation differs from reference implementation
	V-SCT-VUL-015: Contracts: _callbackGasLimit is unused
	V-SCT-VUL-016: 1 added to TwoAdicSubgroup output twice
	V-SCT-VUL-017: Missed opportunities to use appropriate abstractions
	V-SCT-VUL-018: Unused functions/variables
	V-SCT-VUL-019: Bit reversal incorrect for ArityBits != 4
	V-SCT-VUL-020: clearBuffer doesn't clear the buffer
	V-SCT-VUL-021: Possible leakage of randomness
	V-SCT-VUL-022: Unused challenger parameter due to relocated logic
	V-SCT-VUL-023: Errors in gate Id functions
	V-SCT-VUL-024: Use of incorrect constant
	V-SCT-VUL-025: Missing degree check for CosetInterpolationGate
	V-SCT-VUL-026: Contracts: Centralization Risk
	V-SCT-VUL-027: Contracts: All _callbackAddresses permitted
	V-SCT-VUL-028: Replace GoldilocksHashOut size with named constant
	V-SCT-VUL-029: Type error in bn254's HashOrNoop()
	V-SCT-VUL-030: Non-std range-check used
	V-SCT-VUL-031: Various out-of-date comments and documentation
	V-SCT-VUL-032: Typos in code
	V-SCT-VUL-033: Ignored gate parameters
	V-SCT-VUL-034: Hard-coded constants in code
	V-SCT-VUL-035: No assertion that gnark is using BN254
	V-SCT-VUL-036: Inaccurate bounds-check on numConsts
	V-SCT-VUL-037: Sub-optimal sub-expression in random access gate
	V-SCT-VUL-038: Contracts: Code Recommendations
	V-SCT-VUL-039: Contracts: Possible Wasted Gas
	Fuzz Testing
	Methodology

	Methodology
	Properties Fuzzed

	Properties Fuzzed
	Detailed Description of Fuzzed Specifications

	Detailed Description of Fuzzed Specifications
	V-SCT-SPEC-001: Spec: base — Add
	V-SCT-SPEC-002: Spec: base — Exp
	V-SCT-SPEC-003: Spec: base — Inverse
	V-SCT-SPEC-004: Spec: base — Mul
	V-SCT-SPEC-005: Spec: base — MulAdd
	V-SCT-SPEC-006: Spec: base — RangeCheck
	V-SCT-SPEC-007: Spec: base — Reduce
	V-SCT-SPEC-008: Spec: poseidon — bn254
	V-SCT-SPEC-009: Spec: poseidon — goldilocks
	V-SCT-SPEC-010: Spec: quadratic_extension — AddExtension
	V-SCT-SPEC-011: Spec: quadratic_extension — ExpExtension
	V-SCT-SPEC-012: Spec: quadratic_extension — InnerProductExtension
	V-SCT-SPEC-013: Spec: quadratic_extension — InverseExtension
	V-SCT-SPEC-014: Spec: quadratic_extension — IsZero
	V-SCT-SPEC-015: Spec: quadratic_extension — Lookup
	V-SCT-SPEC-016: Spec: quadratic_extension — Lookup2
	V-SCT-SPEC-017: Spec: quadratic_extension — MulAddExtension
	V-SCT-SPEC-018: Spec: quadratic_extension — MulExtension
	V-SCT-SPEC-019: Spec: quadratic_extension — ScalarMulExtension
	V-SCT-SPEC-020: Spec: quadratic_extension — SubExtension
	V-SCT-SPEC-021: Spec: quadratic_extension — SubMulExtension
	Formal Verification
	Formal Verification Procedure

	Formal Verification Procedure
	Properties Verified

	Properties Verified
	Glossary

