package plonky2_verifier import ( . "gnark-ed25519/field" "github.com/consensys/gnark/frontend" ) type PlonkOracle struct { index uint64 blinding bool } var CONSTANTS_SIGMAS = PlonkOracle{ index: 0, blinding: false, } var WIRES = PlonkOracle{ index: 1, blinding: true, } var ZS_PARTIAL_PRODUCTS = PlonkOracle{ index: 2, blinding: true, } var QUOTIENT = PlonkOracle{ index: 3, blinding: true, } type PlonkChip struct { api frontend.API `gnark:"-"` qeAPI *QuadraticExtensionAPI `gnark:"-"` commonData CommonCircuitData `gnark:"-"` DEGREE F `gnark:"-"` DEGREE_BITS_F F `gnark:"-"` DEGREE_QE QuadraticExtension `gnark:"-"` } func NewPlonkChip(api frontend.API, qeAPI *QuadraticExtensionAPI, commonData CommonCircuitData) *PlonkChip { // TODO: Should degreeBits be verified that it fits within the field and that degree is within uint64? return &PlonkChip{ api: api, qeAPI: qeAPI, commonData: commonData, DEGREE: NewFieldElement(1 << commonData.DegreeBits), DEGREE_BITS_F: NewFieldElement(commonData.DegreeBits), DEGREE_QE: QuadraticExtension{NewFieldElement(1 << commonData.DegreeBits), ZERO_F}, } } func (p *PlonkChip) expPowerOf2Extension(x QuadraticExtension) QuadraticExtension { for i := uint64(0); i < p.commonData.DegreeBits; i++ { x = p.qeAPI.SquareExtension(x) } return x } func (p *PlonkChip) evalL0(x QuadraticExtension, xPowN QuadraticExtension) QuadraticExtension { // L_0(x) = (x^n - 1) / (n * (x - 1)) evalZeroPoly := p.qeAPI.SubExtension( xPowN, p.qeAPI.ONE_QE, ) denominator := p.qeAPI.SubExtension( p.qeAPI.ScalarMulExtension(x, p.DEGREE), p.DEGREE_QE, ) return p.qeAPI.DivExtension( evalZeroPoly, denominator, ) } func (p *PlonkChip) checkPartialProducts( numerators []QuadraticExtension, denominators []QuadraticExtension, challengeNum uint64, openings OpeningSet, ) []QuadraticExtension { numPartProds := p.commonData.NumPartialProducts quotDegreeFactor := p.commonData.QuotientDegreeFactor productAccs := make([]QuadraticExtension, 0, numPartProds+2) productAccs = append(productAccs, openings.PlonkZs[challengeNum]) productAccs = append(productAccs, openings.PartialProducts[challengeNum*numPartProds:(challengeNum+1)*numPartProds]...) productAccs = append(productAccs, openings.PlonkZsNext[challengeNum]) partialProductChecks := make([]QuadraticExtension, 0, numPartProds) for i := uint64(0); i <= numPartProds; i += 1 { ppStartIdx := i * quotDegreeFactor numeProduct := numerators[ppStartIdx] denoProduct := denominators[ppStartIdx] for j := uint64(1); j < quotDegreeFactor; j++ { numeProduct = p.qeAPI.MulExtension(numeProduct, numerators[ppStartIdx+j]) denoProduct = p.qeAPI.MulExtension(denoProduct, denominators[ppStartIdx+j]) } partialProductCheck := p.qeAPI.SubExtension( p.qeAPI.MulExtension(productAccs[i], numeProduct), p.qeAPI.MulExtension(productAccs[i+1], denoProduct), ) partialProductChecks = append(partialProductChecks, partialProductCheck) } return partialProductChecks } func (p *PlonkChip) evalVanishingPoly(proofChallenges ProofChallenges, openings OpeningSet, zetaPowN QuadraticExtension) []QuadraticExtension { // Calculate the k[i] * x sIDs := make([]QuadraticExtension, p.commonData.Config.NumRoutedWires) for i := uint64(0); i < p.commonData.Config.NumRoutedWires; i++ { sIDs[i] = p.qeAPI.ScalarMulExtension(proofChallenges.PlonkZeta, p.commonData.KIs[i]) } // Calculate L_0(zeta) l0Zeta := p.evalL0(proofChallenges.PlonkZeta, zetaPowN) vanishingZ1Terms := make([]QuadraticExtension, 0, p.commonData.Config.NumChallenges) vanishingPartialProductsTerms := make([]QuadraticExtension, 0, p.commonData.Config.NumChallenges*p.commonData.NumPartialProducts) for i := uint64(0); i < p.commonData.Config.NumChallenges; i++ { // L_0(zeta) (Z(zeta) - 1) = 0 z1_term := p.qeAPI.MulExtension( l0Zeta, p.qeAPI.SubExtension(openings.PlonkZs[i], p.qeAPI.ONE_QE)) vanishingZ1Terms = append(vanishingZ1Terms, z1_term) numeratorValues := make([]QuadraticExtension, 0, p.commonData.Config.NumRoutedWires) denominatorValues := make([]QuadraticExtension, 0, p.commonData.Config.NumRoutedWires) for j := uint64(0); j < p.commonData.Config.NumRoutedWires; j++ { // The numerator is `beta * s_id + wire_value + gamma`, and the denominator is // `beta * s_sigma + wire_value + gamma`. wireValuePlusGamma := p.qeAPI.AddExtension( openings.Wires[j], p.qeAPI.FieldToQE(proofChallenges.PlonkGammas[i]), ) numerator := p.qeAPI.AddExtension( p.qeAPI.MulExtension( p.qeAPI.FieldToQE(proofChallenges.PlonkBetas[i]), sIDs[j], ), wireValuePlusGamma, ) denominator := p.qeAPI.AddExtension( p.qeAPI.MulExtension( p.qeAPI.FieldToQE(proofChallenges.PlonkBetas[i]), openings.PlonkSigmas[j], ), wireValuePlusGamma, ) numeratorValues = append(numeratorValues, numerator) denominatorValues = append(denominatorValues, denominator) } vanishingPartialProductsTerms = append( vanishingPartialProductsTerms, p.checkPartialProducts(numeratorValues, denominatorValues, i, openings)..., ) } vanishingTerms := append(vanishingZ1Terms, vanishingPartialProductsTerms...) vanishingTerms = append(vanishingTerms, []QuadraticExtension{p.qeAPI.ZERO_QE, p.qeAPI.ZERO_QE, p.qeAPI.ZERO_QE, p.qeAPI.ZERO_QE}...) reducedValues := make([]QuadraticExtension, p.commonData.Config.NumChallenges) for i := uint64(0); i < p.commonData.Config.NumChallenges; i++ { reducedValues[i] = p.qeAPI.ZERO_QE } // reverse iterate the vanishingPartialProductsTerms array for i := len(vanishingTerms) - 1; i >= 0; i-- { for j := uint64(0); j < p.commonData.Config.NumChallenges; j++ { reducedValues[j] = p.qeAPI.AddExtension( vanishingTerms[i], p.qeAPI.ScalarMulExtension( reducedValues[j], proofChallenges.PlonkAlphas[j], ), ) } } return reducedValues } func (p *PlonkChip) Verify(proofChallenges ProofChallenges, openings OpeningSet) { // Calculate zeta^n zetaPowN := p.expPowerOf2Extension(proofChallenges.PlonkZeta) vanishingPolysZeta := p.evalVanishingPoly(proofChallenges, openings, zetaPowN) // Calculate Z(H) zHZeta := p.qeAPI.SubExtension(zetaPowN, p.qeAPI.ONE_QE) // `quotient_polys_zeta` holds `num_challenges * quotient_degree_factor` evaluations. // Each chunk of `quotient_degree_factor` holds the evaluations of `t_0(zeta),...,t_{quotient_degree_factor-1}(zeta)` // where the "real" quotient polynomial is `t(X) = t_0(X) + t_1(X)*X^n + t_2(X)*X^{2n} + ...`. // So to reconstruct `t(zeta)` we can compute `reduce_with_powers(chunk, zeta^n)` for each // `quotient_degree_factor`-sized chunk of the original evaluations. for i := 0; i < len(vanishingPolysZeta); i++ { quotientPolysStartIdx := i * int(p.commonData.QuotientDegreeFactor) quotientPolysEndIdx := quotientPolysStartIdx + int(p.commonData.QuotientDegreeFactor) prod := p.qeAPI.MulExtension( zHZeta, p.qeAPI.ReduceWithPowers( openings.QuotientPolys[quotientPolysStartIdx:quotientPolysEndIdx], zetaPowN, ), ) p.qeAPI.AssertIsEqual(vanishingPolysZeta[i], prod) } }