package fri import ( "fmt" "math" "math/big" "math/bits" "github.com/consensys/gnark-crypto/field/goldilocks" "github.com/consensys/gnark/frontend" "github.com/succinctlabs/gnark-plonky2-verifier/field" "github.com/succinctlabs/gnark-plonky2-verifier/poseidon" "github.com/succinctlabs/gnark-plonky2-verifier/verifier/common" ) type FriChip struct { api frontend.API `gnark:"-"` fieldAPI field.FieldAPI `gnark:"-"` qeAPI *field.QuadraticExtensionAPI `gnark:"-"` poseidonBN128Chip *poseidon.PoseidonBN128Chip friParams *common.FriParams `gnark:"-"` } func NewFriChip( api frontend.API, fieldAPI field.FieldAPI, qeAPI *field.QuadraticExtensionAPI, poseidonBN128Chip *poseidon.PoseidonBN128Chip, friParams *common.FriParams, ) *FriChip { return &FriChip{ api: api, fieldAPI: fieldAPI, qeAPI: qeAPI, poseidonBN128Chip: poseidonBN128Chip, friParams: friParams, } } func (f *FriChip) assertLeadingZeros(powWitness field.F, friConfig common.FriConfig) { // Asserts that powWitness'es big-endian bit representation has at least `leading_zeros` leading zeros. // Note that this is assuming that the Goldilocks field is being used. Specfically that the // field is 64 bits long maxPowWitness := uint64(math.Pow(2, float64(64-friConfig.ProofOfWorkBits))) - 1 reducedPOWWitness := f.fieldAPI.Reduce(powWitness) f.fieldAPI.AssertIsLessOrEqual(reducedPOWWitness, field.NewFieldConst(maxPowWitness)) } func (f *FriChip) fromOpeningsAndAlpha(openings *FriOpenings, alpha field.QuadraticExtension) []field.QuadraticExtension { // One reduced opening for all openings evaluated at point Zeta. // Another one for all openings evaluated at point Zeta * Omega (which is only PlonkZsNext polynomial) reducedOpenings := make([]field.QuadraticExtension, 0, 2) for _, batch := range openings.Batches { reducedOpenings = append(reducedOpenings, f.qeAPI.ReduceWithPowers(batch.Values, alpha)) } return reducedOpenings } func (f *FriChip) verifyMerkleProofToCapWithCapIndex(leafData []field.F, leafIndexBits []frontend.Variable, capIndexBits []frontend.Variable, merkleCap common.MerkleCap, proof *common.MerkleProof) { currentDigest := f.poseidonBN128Chip.HashOrNoop(leafData) for i, sibling := range proof.Siblings { bit := leafIndexBits[i] // TODO: Don't need to do two hashes by using a trick that the plonky2 verifier circuit does // https://github.com/mir-protocol/plonky2/blob/973624f12d2d12d74422b3ea051358b9eaacb050/plonky2/src/gates/poseidon.rs#L298 leftHash := f.poseidonBN128Chip.TwoToOne(sibling, currentDigest) rightHash := f.poseidonBN128Chip.TwoToOne(currentDigest, sibling) currentDigest = f.api.Select(bit, leftHash, rightHash) } // We assume that the cap_height is 4. Create two levels of the Lookup2 circuit if len(capIndexBits) != 4 || len(merkleCap) != 16 { errorMsg, _ := fmt.Printf( "capIndexBits length should be 4 and the merkleCap length should be 16. Actual values (capIndexBits: %d, merkleCap: %d)\n", len(capIndexBits), len(merkleCap), ) panic(errorMsg) } const NUM_LEAF_LOOKUPS = 4 var leafLookups [NUM_LEAF_LOOKUPS]poseidon.PoseidonBN128HashOut // First create the "leaf" lookup2 circuits // The will use the least significant bits of the capIndexBits array for i := 0; i < NUM_LEAF_LOOKUPS; i++ { leafLookups[i] = f.api.Lookup2( capIndexBits[0], capIndexBits[1], merkleCap[i*NUM_LEAF_LOOKUPS], merkleCap[i*NUM_LEAF_LOOKUPS+1], merkleCap[i*NUM_LEAF_LOOKUPS+2], merkleCap[i*NUM_LEAF_LOOKUPS+3], ) } // Use the most 2 significant bits of the capIndexBits array for the "root" lookup merkleCapEntry := f.api.Lookup2(capIndexBits[2], capIndexBits[3], leafLookups[0], leafLookups[1], leafLookups[2], leafLookups[3]) f.api.AssertIsEqual(currentDigest, merkleCapEntry) } func (f *FriChip) verifyInitialProof(xIndexBits []frontend.Variable, proof *common.FriInitialTreeProof, initialMerkleCaps []common.MerkleCap, capIndexBits []frontend.Variable) { if len(proof.EvalsProofs) != len(initialMerkleCaps) { panic("length of eval proofs in fri proof should equal length of initial merkle caps") } for i := 0; i < len(initialMerkleCaps); i++ { evals := proof.EvalsProofs[i].Elements merkleProof := proof.EvalsProofs[i].MerkleProof cap := initialMerkleCaps[i] f.verifyMerkleProofToCapWithCapIndex(evals, xIndexBits, capIndexBits, cap, &merkleProof) } } // / We decompose FRI query indices into bits without verifying that the decomposition given by // / the prover is the canonical one. In particular, if `x_index < 2^field_bits - p`, then the // / prover could supply the binary encoding of either `x_index` or `x_index + p`, since they are // / congruent mod `p`. However, this only occurs with probability // / p_ambiguous = (2^field_bits - p) / p // / which is small for the field that we use in practice. // / // / In particular, the soundness error of one FRI query is roughly the codeword rate, which // / is much larger than this ambiguous-element probability given any reasonable parameters. // / Thus ambiguous elements contribute a negligible amount to soundness error. // / // / Here we compare the probabilities as a sanity check, to verify the claim above. func (f *FriChip) assertNoncanonicalIndicesOK() { numAmbiguousElems := uint64(math.MaxUint64) - goldilocks.Modulus().Uint64() + 1 queryError := f.friParams.Config.Rate() pAmbiguous := float64(numAmbiguousElems) / float64(goldilocks.Modulus().Uint64()) // TODO: Check that pAmbiguous value is the same as the one in plonky2 verifier if pAmbiguous >= queryError*1e-5 { panic("A non-negligible portion of field elements are in the range that permits non-canonical encodings. Need to do more analysis or enforce canonical encodings.") } } func (f *FriChip) expFromBitsConstBase( base goldilocks.Element, exponentBits []frontend.Variable, ) field.F { product := field.ONE_F for i, bit := range exponentBits { pow := int64(1 << i) // If the bit is on, we multiply product by base^pow. // We can arithmetize this as: // product *= 1 + bit (base^pow - 1) // product = (base^pow - 1) product bit + product basePow := goldilocks.NewElement(0) basePow.Exp(base, big.NewInt(pow)) basePowElement := field.NewFieldConst(basePow.Uint64() - 1) product = f.fieldAPI.Add( f.fieldAPI.Mul( f.fieldAPI.Mul( basePowElement, product), f.fieldAPI.NewElement(bit)), product, ) } return product } func (f *FriChip) calculateSubgroupX( xIndexBits []frontend.Variable, nLog uint64, ) field.F { // Compute x from its index // `subgroup_x` is `subgroup[x_index]`, i.e., the actual field element in the domain. // TODO - Make these as global values g := field.NewFieldConst(field.GOLDILOCKS_MULTIPLICATIVE_GROUP_GENERATOR.Uint64()) base := field.GoldilocksPrimitiveRootOfUnity(nLog) // Create a reverse list of xIndexBits xIndexBitsRev := make([]frontend.Variable, 0) for i := len(xIndexBits) - 1; i >= 0; i-- { xIndexBitsRev = append(xIndexBitsRev, xIndexBits[i]) } product := f.expFromBitsConstBase(base, xIndexBitsRev) return f.fieldAPI.Mul(g, product) } func (f *FriChip) friCombineInitial( instance FriInstanceInfo, proof common.FriInitialTreeProof, friAlpha field.QuadraticExtension, subgroupX_QE field.QuadraticExtension, precomputedReducedEval []field.QuadraticExtension, ) field.QuadraticExtension { sum := f.qeAPI.ZERO_QE if len(instance.Batches) != len(precomputedReducedEval) { panic("len(openings) != len(precomputedReducedEval)") } for i := 0; i < len(instance.Batches); i++ { batch := instance.Batches[i] reducedOpenings := precomputedReducedEval[i] point := batch.Point evals := make([]field.QuadraticExtension, 0) for _, polynomial := range batch.Polynomials { evals = append( evals, field.QuadraticExtension{proof.EvalsProofs[polynomial.OracleIndex].Elements[polynomial.PolynomialInfo], field.ZERO_F}, ) } reducedEvals := f.qeAPI.ReduceWithPowers(evals, friAlpha) numerator := f.qeAPI.SubExtension(reducedEvals, reducedOpenings) denominator := f.qeAPI.SubExtension(subgroupX_QE, point) sum = f.qeAPI.MulExtension(f.qeAPI.ExpU64Extension(friAlpha, uint64(len(evals))), sum) sum = f.qeAPI.AddExtension( f.qeAPI.DivExtension( numerator, denominator, ), sum, ) } return sum } func (f *FriChip) finalPolyEval(finalPoly common.PolynomialCoeffs, point field.QuadraticExtension) field.QuadraticExtension { ret := f.qeAPI.ZERO_QE for i := len(finalPoly.Coeffs) - 1; i >= 0; i-- { ret = f.qeAPI.AddExtension( f.qeAPI.MulExtension( ret, point, ), finalPoly.Coeffs[i], ) } return ret } func (f *FriChip) interpolate(x field.QuadraticExtension, xPoints []field.QuadraticExtension, yPoints []field.QuadraticExtension, barycentricWeights []field.QuadraticExtension) field.QuadraticExtension { if len(xPoints) != len(yPoints) || len(xPoints) != len(barycentricWeights) { panic("length of xPoints, yPoints, and barycentricWeights are inconsistent") } lX := f.qeAPI.ONE_QE for i := 0; i < len(xPoints); i++ { lX = f.qeAPI.MulExtension( lX, f.qeAPI.SubExtension( x, xPoints[i], ), ) } sum := f.qeAPI.ZERO_QE for i := 0; i < len(xPoints); i++ { sum = f.qeAPI.AddExtension( f.qeAPI.MulExtension( f.qeAPI.DivExtension( barycentricWeights[i], f.qeAPI.SubExtension( x, xPoints[i], ), ), yPoints[i], ), sum, ) } interpolation := f.qeAPI.MulExtension(lX, sum) returnField := interpolation // Now check if x is already within the xPoints for i := 0; i < len(xPoints); i++ { returnField = f.qeAPI.Select( f.qeAPI.IsZero(f.qeAPI.SubExtension(x, xPoints[i])), yPoints[i], returnField, ) } return returnField } func (f *FriChip) computeEvaluation( x field.F, xIndexWithinCosetBits []frontend.Variable, arityBits uint64, evals []field.QuadraticExtension, beta field.QuadraticExtension, ) field.QuadraticExtension { arity := 1 << arityBits if (len(evals)) != arity { panic("len(evals) ! arity") } if arityBits > 8 { panic("currently assuming that arityBits is <= 8") } g := field.GoldilocksPrimitiveRootOfUnity(arityBits) gInv := goldilocks.NewElement(0) gInv.Exp(g, big.NewInt(int64(arity-1))) // The evaluation vector needs to be reordered first. Permute the evals array such that each // element's new index is the bit reverse of it's original index. // TODO: Optimization - Since the size of the evals array should be constant (e.g. 2^arityBits), // we can just hard code the permutation. permutedEvals := make([]field.QuadraticExtension, len(evals)) for i := uint8(0); i < uint8(len(evals)); i++ { newIndex := bits.Reverse8(i) >> arityBits permutedEvals[newIndex] = evals[i] } // Want `g^(arity - rev_x_index_within_coset)` as in the out-of-circuit version. Compute it // as `(g^-1)^rev_x_index_within_coset`. revXIndexWithinCosetBits := make([]frontend.Variable, len(xIndexWithinCosetBits)) for i := 0; i < len(xIndexWithinCosetBits); i++ { revXIndexWithinCosetBits[len(xIndexWithinCosetBits)-1-i] = xIndexWithinCosetBits[i] } start := f.expFromBitsConstBase(gInv, revXIndexWithinCosetBits) cosetStart := f.fieldAPI.Mul(start, x) xPoints := make([]field.QuadraticExtension, len(evals)) yPoints := permutedEvals // TODO: Make g_F a constant g_F := f.qeAPI.FieldToQE(field.NewFieldConst(g.Uint64())) xPoints[0] = f.qeAPI.FieldToQE(cosetStart) for i := 1; i < len(evals); i++ { xPoints[i] = f.qeAPI.MulExtension(xPoints[i-1], g_F) } // TODO: This is n^2. Is there a way to do this better? // Compute the barycentric weights barycentricWeights := make([]field.QuadraticExtension, len(xPoints)) for i := 0; i < len(xPoints); i++ { barycentricWeights[i] = f.qeAPI.ONE_QE for j := 0; j < len(xPoints); j++ { if i != j { barycentricWeights[i] = f.qeAPI.MulExtension( f.qeAPI.SubExtension(xPoints[i], xPoints[j]), barycentricWeights[i], ) } } // Take the inverse of the barycentric weights // TODO: Can provide a witness to this value barycentricWeights[i] = f.qeAPI.InverseExtension(barycentricWeights[i]) } return f.interpolate(beta, xPoints, yPoints, barycentricWeights) } func (f *FriChip) verifyQueryRound( instance FriInstanceInfo, challenges *common.FriChallenges, precomputedReducedEval []field.QuadraticExtension, initialMerkleCaps []common.MerkleCap, proof *common.FriProof, xIndex field.F, n uint64, nLog uint64, roundProof *common.FriQueryRound, ) { f.assertNoncanonicalIndicesOK() xIndex = f.fieldAPI.Reduce(xIndex) xIndexBits := f.fieldAPI.ToBits(xIndex)[0 : f.friParams.DegreeBits+f.friParams.Config.RateBits] capIndexBits := xIndexBits[len(xIndexBits)-int(f.friParams.Config.CapHeight):] f.verifyInitialProof(xIndexBits, &roundProof.InitialTreesProof, initialMerkleCaps, capIndexBits) subgroupX := f.calculateSubgroupX( xIndexBits, nLog, ) subgroupX_QE := field.QuadraticExtension{subgroupX, field.ZERO_F} oldEval := f.friCombineInitial( instance, roundProof.InitialTreesProof, challenges.FriAlpha, subgroupX_QE, precomputedReducedEval, ) for i, arityBits := range f.friParams.ReductionArityBits { evals := roundProof.Steps[i].Evals cosetIndexBits := xIndexBits[arityBits:] xIndexWithinCosetBits := xIndexBits[:arityBits] // Assumes that the arity bits will be 4. That means that the range of // xIndexWithCoset is [0,2^4-1]. This is based on plonky2's circuit recursive // config: https://github.com/mir-protocol/plonky2/blob/main/plonky2/src/plonk/circuit_data.rs#L63 // Will use a two levels tree of 4-selector gadgets. if arityBits != 4 { panic("assuming arity bits is 4") } const NUM_LEAF_LOOKUPS = 4 var leafLookups [NUM_LEAF_LOOKUPS]field.QuadraticExtension // First create the "leaf" lookup2 circuits // The will use the least significant bits of the xIndexWithCosetBits array for i := 0; i < NUM_LEAF_LOOKUPS; i++ { leafLookups[i] = f.qeAPI.Lookup2( xIndexWithinCosetBits[0], xIndexWithinCosetBits[1], evals[i*NUM_LEAF_LOOKUPS], evals[i*NUM_LEAF_LOOKUPS+1], evals[i*NUM_LEAF_LOOKUPS+2], evals[i*NUM_LEAF_LOOKUPS+3], ) } // Use the most 2 significant bits of the xIndexWithCosetBits array for the "root" lookup newEval := f.qeAPI.Lookup2( xIndexWithinCosetBits[2], xIndexWithinCosetBits[3], leafLookups[0], leafLookups[1], leafLookups[2], leafLookups[3], ) f.qeAPI.AssertIsEqual(newEval, oldEval) oldEval = f.computeEvaluation( subgroupX, xIndexWithinCosetBits, arityBits, evals, challenges.FriBetas[i], ) // Convert evals (array of QE) to fields by taking their 0th degree coefficients fieldEvals := make([]field.F, 0, 2*len(evals)) for j := 0; j < len(evals); j++ { fieldEvals = append(fieldEvals, evals[j][0]) fieldEvals = append(fieldEvals, evals[j][1]) } f.verifyMerkleProofToCapWithCapIndex( fieldEvals, cosetIndexBits, capIndexBits, proof.CommitPhaseMerkleCaps[i], &roundProof.Steps[i].MerkleProof, ) // Update the point x to x^arity. for j := uint64(0); j < arityBits; j++ { subgroupX = f.fieldAPI.Mul(subgroupX, subgroupX) } xIndexBits = cosetIndexBits } subgroupX_QE = f.qeAPI.FieldToQE(subgroupX) finalPolyEval := f.finalPolyEval(proof.FinalPoly, subgroupX_QE) f.qeAPI.AssertIsEqual(oldEval, finalPolyEval) } func (f *FriChip) VerifyFriProof( instance FriInstanceInfo, openings FriOpenings, friChallenges *common.FriChallenges, initialMerkleCaps []common.MerkleCap, friProof *common.FriProof, ) { // TODO: Check fri config /* if let Some(max_arity_bits) = params.max_arity_bits() { self.check_recursion_config::(max_arity_bits); } debug_assert_eq!( params.final_poly_len(), proof.final_poly.len(), "Final polynomial has wrong degree." ); */ // Check POW f.assertLeadingZeros(friChallenges.FriPowResponse, f.friParams.Config) precomputedReducedEvals := f.fromOpeningsAndAlpha(&openings, friChallenges.FriAlpha) // Size of the LDE domain. nLog := f.friParams.DegreeBits + f.friParams.Config.RateBits n := uint64(math.Pow(2, float64(nLog))) if len(friChallenges.FriQueryIndices) != len(friProof.QueryRoundProofs) { panic(fmt.Sprintf( "Number of query indices (%d) should equal number of query round proofs (%d)", len(friChallenges.FriQueryIndices), len(friProof.QueryRoundProofs), )) } for idx, xIndex := range friChallenges.FriQueryIndices { roundProof := friProof.QueryRoundProofs[idx] f.verifyQueryRound( instance, friChallenges, precomputedReducedEvals, initialMerkleCaps, friProof, xIndex, n, nLog, &roundProof, ) } }