package edwards_curve // This file is little-endian import ( "fmt" "math/big" "github.com/consensys/gnark/frontend" "github.com/consensys/gnark/std/math/emulated" "gnark-ed25519/sha512" ) func H(api frontend.API, m []frontend.Variable) []frontend.Variable { fmt.Println("sha input", m) rawResult := sha512.Sha512(api, swapByteEndianness(m)) sResult := swapByteEndianness(rawResult[:]) fmt.Println("sha output", sResult) return sResult } func pow2(n uint) *big.Int { result := big.NewInt(1) result.Lsh(result, n) return result } type EdCurve = Curve[Ed25519, Ed25519Scalars] type EdPoint = AffinePoint[Ed25519] type EdCoordinate = emulated.Element[Ed25519] type EdScalar = emulated.Element[Ed25519Scalars] func bits_to_scalar(c *EdCurve, s []frontend.Variable) EdCoordinate { if len(s) != 256 { panic("bad length") } elt := emulated.NewElement[Ed25519](0) if len(elt.Limbs) != 4 { panic("bad length") } i := 0 elt.Limbs[0] = c.api.FromBinary(s[i:i+64]...); i += 64 elt.Limbs[1] = c.api.FromBinary(s[i:i+64]...); i += 64 elt.Limbs[2] = c.api.FromBinary(s[i:i+64]...); i += 64 elt.Limbs[3] = c.api.FromBinary(s[i:i+64]...); i += 64 if i != len(s) { panic("bad length") } return elt } // func bits_to_clamped_scalar(c *EdCurve, input []frontend.Variable) EdScalar { // if len(input) != 256 { panic("bad length") } // s := make([]frontend.Variable, len(input)) // copy(s, input) // s[0] = 0 // s[1] = 0 // s[2] = 0 // s[254] = 1 // return bits_to_scalar[Ed25519Scalars](c, s) // } func bits_to_element(c *EdCurve, input []frontend.Variable) EdPoint { // L := emulated.NewElement[Ed25519Scalars](rEd25519) unchecked_point := decodepoint(c, input) // // TODO: https://github.com/warner/python-pure25519 says this check is not necessary: // // // // > This library is conservative, and performs full subgroup-membership checks on decoded // // > points, which adds considerable overhead. The Curve25519/Ed25519 algorithms were // // > designed to not require these checks, so a careful application might be able to // // > improve on this slightly (Ed25519 verify down to 6.2ms, DH-finish to 3.2ms). // c.AssertIsZero(c.ScalarMul(unchecked_point, L)) return unchecked_point } // func publickey(c *EdCurve, seed []frontend.Variable) EdPoint { // if len(seed) != 32 { panic("bad length") } // a := bits_to_clamped_scalar(c, H(c.api, seed)[:256]) // return c.ScalarMul(c.g, a) // } func CheckValid(c *EdCurve, s, m, pk []frontend.Variable) { if len(s) != 512 { panic("bad signature length") } if len(pk) != 256 { panic("bad public key length") } if len(m) % 8 != 0 { panic("bad message length") } R := bits_to_element(c, s[:256]) A := bits_to_element(c, pk) h := H(c.api, concat(s[:256], pk, m)) fmt.Println("h", h) fmt.Println("g", dbg(c.g.X), dbg(c.g.Y)) fmt.Println("s last half", s[256:]) v1 := c.ScalarMulBinary(c.g, s[256:]) fmt.Println("v1", dbg(v1.X), dbg(v1.Y)) v2 := c.Add(R, c.ScalarMulBinary(A, h)) fmt.Println("v2", dbg(v2.X), dbg(v2.Y)) c.AssertIsEqual(v1, v2) } func reverse[T interface{}](arr []T) []T { result := make([]T, len(arr)) for i, v := range arr { result[len(result)-i-1] = v } return result } func concat(args ...[]frontend.Variable) []frontend.Variable { result := []frontend.Variable{} for _, v := range args { result = append(result, v...) } return result } func decodepoint(c *EdCurve, unclamped []frontend.Variable) EdPoint { if len(unclamped) != 256 { panic("bad length") } s := make([]frontend.Variable, len(unclamped)) copy(s, unclamped) s[255] = 0 y := bits_to_scalar(c, s) // unclamped = int(binascii.hexlify(s[:32][::-1]), 16) // clamp = (1 << 255) - 1 // y = unclamped & clamp # clear MSB x := xrecover(c, y) // x = xrecover(y) xbits := c.baseApi.ToBinary(x) if len(xbits) != 256 { panic("bad length") } mismatch := c.api.Xor(xbits[0], unclamped[255]) x = c.baseApi.Select(mismatch, c.baseApi.Neg(x), x).(EdCoordinate) // if bool(x & 1) != bool(unclamped & (1<<255)): x = Q-x P := AffinePoint[Ed25519]{ X: x, Y: y, } // P = [x,y] c.AssertIsOnCurve(P) // if not isoncurve(P): raise NotOnCurve("decoding point that is not on curve") return P } func toValue(s EdCoordinate) *big.Int { result := big.NewInt(0) placeValue := big.NewInt(1) for _, v := range s.Limbs { q := new(big.Int).Mul(placeValue, v.(*big.Int)) result.Add(result, q) placeValue.Lsh(placeValue, Ed25519{}.BitsPerLimb()) } return result } func dbg(s EdCoordinate) string { return toValue(s).Text(16) } func _const(x int64) EdCoordinate { return emulated.NewElement[Ed25519](big.NewInt(x)) } // Q = 2**255 - 19 // L = 2**252 + 27742317777372353535851937790883648493 // def inv(x): // return pow(x, Q-2, Q) // d = -121665 * inv(121666) // I = pow(2,(Q-1)//4,Q) func xrecover(c *EdCurve, y EdCoordinate) EdCoordinate { Q := Ed25519{}.Modulus() I := emulated.NewElement[Ed25519](newBigInt("2b8324804fc1df0b2b4d00993dfbd7a72f431806ad2fe478c4ee1b274a0ea0b0")) yy := c.baseApi.Mul(y, y) xx := c.baseApi.Div( c.baseApi.Sub(yy, _const(1)), c.baseApi.Add(c.baseApi.Mul(c.d, yy), _const(1)), ).(EdCoordinate) // xx = (y*y-1) * inv(d*y*y+1) power := new(big.Int).Add(Q, big.NewInt(3)) power.Rsh(power, 3) x := pow(c, xx, power) // x = pow(xx,(Q+3)//8,Q) matches := c.baseApi.IsZero(c.baseApi.Sub( c.baseApi.Mul(x, x), xx, )) x = c.baseApi.Select(matches, x, c.baseApi.Mul(x, emulated.NewElement[Ed25519](I))).(EdCoordinate) // if (x*x - xx) % Q != 0: x = (x*I) % Q odd := c.baseApi.ToBinary(x)[0] x = c.baseApi.Select(odd, c.baseApi.Neg(x), x).(EdCoordinate) // if x % 2 != 0: x = Q-x return x } func pow(c *EdCurve, base EdCoordinate, exponent *big.Int) EdCoordinate { mul := base result := _const(1) for exponent.Sign() > 0 { if exponent.Bit(0) != 0 { result = c.baseApi.Mul(result, mul).(EdCoordinate) } mul = c.baseApi.Mul(mul, mul).(EdCoordinate) exponent.Rsh(exponent, 1) } return result } func swapByteEndianness(in []frontend.Variable) []frontend.Variable { if len(in) % 8 != 0 { panic("must be a multiple of 8 bits") } result := make([]frontend.Variable, len(in)) for i := 0; i < len(in); i += 8 { for j := 0; j < 8; j++ { result[i+j] = in[i+7-j] } } return result } // def checkvalid(s, m, pk): // if len(s) != 64: raise Exception("signature length is wrong") // if len(pk) != 32: raise Exception("public-key length is wrong") // R = bytes_to_element(s[:32]) // A = bytes_to_element(pk) // S = bytes_to_scalar(s[32:]) // h = Hint(s[:32] + pk + m) // v1 = Base.scalarmult(S) // v2 = R.add(A.scalarmult(h)) // return v1==v2 // def publickey(seed): // # turn first half of SHA512(seed) into scalar, then into point // assert len(seed) == 32 // a = bytes_to_clamped_scalar(H(seed)[:32]) // A = Base.scalarmult(a) // return A.to_bytes() // def bytes_to_scalar(s): // assert len(s) == 32, len(s) // return int(binascii.hexlify(s[::-1]), 16) // from pure25519.basic import (bytes_to_clamped_scalar, // bytes_to_scalar, scalar_to_bytes, // bytes_to_element, Base) // import hashlib, binascii // def H(m): // return hashlib.sha512(m).digest() // def Hint(m): // h = H(m) // return int(binascii.hexlify(h[::-1]), 16) // def signature(m,sk,pk): // assert len(sk) == 32 # seed // assert len(pk) == 32 // h = H(sk[:32]) // a_bytes, inter = h[:32], h[32:] // a = bytes_to_clamped_scalar(a_bytes) // r = Hint(inter + m) // R = Base.scalarmult(r) // R_bytes = R.to_bytes() // S = r + Hint(R_bytes + pk + m) * a // return R_bytes + scalar_to_bytes(S) // def checkvalid(s, m, pk): // if len(s) != 64: raise Exception("signature length is wrong") // if len(pk) != 32: raise Exception("public-key length is wrong") // R = bytes_to_element(s[:32]) // A = bytes_to_element(pk) // S = bytes_to_scalar(s[32:]) // h = Hint(s[:32] + pk + m) // v1 = Base.scalarmult(S) // v2 = R.add(A.scalarmult(h)) // return v1==v2 // # wrappers // import os // def create_signing_key(): // seed = os.urandom(32) // return seed // def create_verifying_key(signing_key): // return publickey(signing_key) // def sign(skbytes, msg): // """Return just the signature, given the message and just the secret // key.""" // if len(skbytes) != 32: // raise ValueError("Bad signing key length %d" % len(skbytes)) // vkbytes = create_verifying_key(skbytes) // sig = signature(msg, skbytes, vkbytes) // return sig // def verify(vkbytes, sig, msg): // if len(vkbytes) != 32: // raise ValueError("Bad verifying key length %d" % len(vkbytes)) // if len(sig) != 64: // raise ValueError("Bad signature length %d" % len(sig)) // rc = checkvalid(sig, msg, vkbytes) // if not rc: // raise ValueError("rc != 0", rc) // return True