package field import ( "fmt" "math/bits" "github.com/consensys/gnark/frontend" ) type QuadraticExtensionAPI struct { fieldAPI frontend.API W F DTH_ROOT F ONE_QE QuadraticExtension ZERO_QE QuadraticExtension } func NewQuadraticExtensionAPI(fieldAPI frontend.API, degreeBits uint64) *QuadraticExtensionAPI { // TODO: Should degreeBits be verified that it fits within the field and that degree is within uint64? return &QuadraticExtensionAPI{ fieldAPI: fieldAPI, W: NewFieldElement(7), DTH_ROOT: NewFieldElement(18446744069414584320), ONE_QE: QuadraticExtension{ONE_F, ZERO_F}, ZERO_QE: QuadraticExtension{ZERO_F, ZERO_F}, } } func (c *QuadraticExtensionAPI) SquareExtension(a QuadraticExtension) QuadraticExtension { return c.MulExtension(a, a) } func (c *QuadraticExtensionAPI) MulExtension(a QuadraticExtension, b QuadraticExtension) QuadraticExtension { c_0 := c.fieldAPI.Add(c.fieldAPI.Mul(a[0], b[0]).(F), c.fieldAPI.Mul(c.W, a[1], b[1])).(F) c_1 := c.fieldAPI.Add(c.fieldAPI.Mul(a[0], b[1]).(F), c.fieldAPI.Mul(a[1], b[0])).(F) return QuadraticExtension{c_0, c_1} } func (c *QuadraticExtensionAPI) AddExtension(a QuadraticExtension, b QuadraticExtension) QuadraticExtension { c_0 := c.fieldAPI.Add(a[0], b[0]).(F) c_1 := c.fieldAPI.Add(a[1], b[1]).(F) return QuadraticExtension{c_0, c_1} } func (c *QuadraticExtensionAPI) SubExtension(a QuadraticExtension, b QuadraticExtension) QuadraticExtension { c_0 := c.fieldAPI.Sub(a[0], b[0]).(F) c_1 := c.fieldAPI.Sub(a[1], b[1]).(F) return QuadraticExtension{c_0, c_1} } func (c *QuadraticExtensionAPI) DivExtension(a QuadraticExtension, b QuadraticExtension) QuadraticExtension { return c.MulExtension(a, c.InverseExtension(b)) } func (c *QuadraticExtensionAPI) IsZero(a QuadraticExtension) frontend.Variable { return c.fieldAPI.Mul(c.fieldAPI.IsZero(a[0]), c.fieldAPI.IsZero(a[1])) } // TODO: Instead of calculating the inverse within the circuit, can witness the // inverse and assert that a_inverse * a = 1. Should reduce # of constraints. func (c *QuadraticExtensionAPI) InverseExtension(a QuadraticExtension) QuadraticExtension { // First assert that a doesn't have 0 value coefficients a0_is_zero := c.fieldAPI.IsZero(a[0]) a1_is_zero := c.fieldAPI.IsZero(a[1]) // assert that a0_is_zero OR a1_is_zero == false c.fieldAPI.AssertIsEqual(c.fieldAPI.Mul(a0_is_zero, a1_is_zero).(F), ZERO_F) a_pow_r_minus_1 := QuadraticExtension{a[0], c.fieldAPI.Mul(a[1], c.DTH_ROOT).(F)} a_pow_r := c.MulExtension(a_pow_r_minus_1, a) return c.ScalarMulExtension(a_pow_r_minus_1, c.fieldAPI.Inverse(a_pow_r[0]).(F)) } func (c *QuadraticExtensionAPI) ScalarMulExtension(a QuadraticExtension, scalar F) QuadraticExtension { return QuadraticExtension{c.fieldAPI.Mul(a[0], scalar).(F), c.fieldAPI.Mul(a[1], scalar).(F)} } func (c *QuadraticExtensionAPI) FieldToQE(a F) QuadraticExtension { return QuadraticExtension{a, ZERO_F} } // / Exponentiate `base` to the power of a known `exponent`. func (c *QuadraticExtensionAPI) ExpU64Extension(a QuadraticExtension, exponent uint64) QuadraticExtension { switch exponent { case 0: return c.ONE_QE case 1: return a case 2: return c.SquareExtension(a) default: } current := a product := c.ONE_QE for i := 0; i < bits.Len64(exponent); i++ { if i != 0 { current = c.SquareExtension(current) } if (exponent >> i & 1) != 0 { product = c.MulExtension(product, current) } } return product } func (c *QuadraticExtensionAPI) ReduceWithPowers(terms []QuadraticExtension, scalar QuadraticExtension) QuadraticExtension { sum := c.ZERO_QE for i := len(terms) - 1; i >= 0; i-- { sum = c.AddExtension( c.MulExtension( sum, scalar, ), terms[i], ) } return sum } func (c *QuadraticExtensionAPI) Select(b0 frontend.Variable, qe0, qe1 QuadraticExtension) QuadraticExtension { var retQE QuadraticExtension for i := 0; i < 2; i++ { retQE[i] = c.fieldAPI.Select(b0, qe0[i], qe1[i]).(F) } return retQE } func (c *QuadraticExtensionAPI) Lookup2(b0 frontend.Variable, b1 frontend.Variable, qe0, qe1, qe2, qe3 QuadraticExtension) QuadraticExtension { var retQE QuadraticExtension for i := 0; i < 2; i++ { retQE[i] = c.fieldAPI.Lookup2(b0, b1, qe0[i], qe1[i], qe2[i], qe3[i]).(F) } return retQE } func (c *QuadraticExtensionAPI) AssertIsEqual(a, b QuadraticExtension) { for i := 0; i < 2; i++ { c.fieldAPI.AssertIsEqual(a[0], b[0]) } } func (c *QuadraticExtensionAPI) Println(a QuadraticExtension) { fmt.Print("Degree 0 coefficient") c.fieldAPI.Println(a[0]) fmt.Print("Degree 1 coefficient") c.fieldAPI.Println(a[1]) }