You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

519 lines
16 KiB

package fri
import (
"fmt"
"math"
"math/big"
"math/bits"
"github.com/consensys/gnark-crypto/field/goldilocks"
"github.com/consensys/gnark/frontend"
gl "github.com/succinctlabs/gnark-plonky2-verifier/goldilocks"
"github.com/succinctlabs/gnark-plonky2-verifier/poseidon"
"github.com/succinctlabs/gnark-plonky2-verifier/types"
)
type Chip struct {
api frontend.API `gnark:"-"`
gl gl.Chip `gnark:"-"`
poseidonBN254Chip *poseidon.BN254Chip
friParams *types.FriParams `gnark:"-"`
}
func NewChip(
api frontend.API,
friParams *types.FriParams,
) *Chip {
poseidonBN254Chip := poseidon.NewBN254Chip(api)
return &Chip{
api: api,
poseidonBN254Chip: poseidonBN254Chip,
friParams: friParams,
gl: *gl.NewChip(api),
}
}
func (f *Chip) assertLeadingZeros(powWitness gl.Variable, friConfig types.FriConfig) {
// Asserts that powWitness'es big-endian bit representation has at least `leading_zeros` leading zeros.
// Note that this is assuming that the Goldilocks field is being used. Specfically that the
// field is 64 bits long
maxPowWitness := uint64(math.Pow(2, float64(64-friConfig.ProofOfWorkBits))) - 1
reducedPowWitness := f.gl.Reduce(powWitness)
f.api.AssertIsLessOrEqual(reducedPowWitness.Limb, frontend.Variable(maxPowWitness))
}
func (f *Chip) fromOpeningsAndAlpha(
openings *Openings,
alpha gl.QuadraticExtensionVariable,
) []gl.QuadraticExtensionVariable {
// One reduced opening for all openings evaluated at point Zeta.
// Another one for all openings evaluated at point Zeta * Omega (which is only PlonkZsNext polynomial)
reducedOpenings := make([]gl.QuadraticExtensionVariable, 0, 2)
for _, batch := range openings.Batches {
reducedOpenings = append(reducedOpenings, f.gl.ReduceWithPowers(batch.Values, alpha))
}
return reducedOpenings
}
func (f *Chip) verifyMerkleProofToCapWithCapIndex(
leafData []gl.Variable,
leafIndexBits []frontend.Variable,
capIndexBits []frontend.Variable,
merkleCap types.FriMerkleCap,
proof *types.FriMerkleProof,
) {
currentDigest := f.poseidonBN254Chip.HashOrNoop(leafData)
for i, sibling := range proof.Siblings {
bit := leafIndexBits[i]
// TODO: Don't need to do two hashes by using a trick that the plonky2 verifier circuit does
// https://github.com/mir-protocol/plonky2/blob/973624f12d2d12d74422b3ea051358b9eaacb050/plonky2/src/gates/poseidon.rs#L298
leftHash := f.poseidonBN254Chip.TwoToOne(sibling, currentDigest)
rightHash := f.poseidonBN254Chip.TwoToOne(currentDigest, sibling)
currentDigest = f.api.Select(bit, leftHash, rightHash)
}
// We assume that the cap_height is 4. Create two levels of the Lookup2 circuit
if len(capIndexBits) != 4 || len(merkleCap) != 16 {
errorMsg, _ := fmt.Printf(
"capIndexBits length should be 4 and the merkleCap length should be 16. Actual values (capIndexBits: %d, merkleCap: %d)\n",
len(capIndexBits),
len(merkleCap),
)
panic(errorMsg)
}
const NUM_LEAF_LOOKUPS = 4
var leafLookups [NUM_LEAF_LOOKUPS]poseidon.BN254HashOut
// First create the "leaf" lookup2 circuits
// The will use the least significant bits of the capIndexBits array
for i := 0; i < NUM_LEAF_LOOKUPS; i++ {
leafLookups[i] = f.api.Lookup2(
capIndexBits[0], capIndexBits[1],
merkleCap[i*NUM_LEAF_LOOKUPS], merkleCap[i*NUM_LEAF_LOOKUPS+1], merkleCap[i*NUM_LEAF_LOOKUPS+2], merkleCap[i*NUM_LEAF_LOOKUPS+3],
)
}
// Use the most 2 significant bits of the capIndexBits array for the "root" lookup
merkleCapEntry := f.api.Lookup2(capIndexBits[2], capIndexBits[3], leafLookups[0], leafLookups[1], leafLookups[2], leafLookups[3])
f.api.AssertIsEqual(currentDigest, merkleCapEntry)
}
func (f *Chip) verifyInitialProof(xIndexBits []frontend.Variable, proof *types.FriInitialTreeProof, initialMerkleCaps []types.FriMerkleCap, capIndexBits []frontend.Variable) {
if len(proof.EvalsProofs) != len(initialMerkleCaps) {
panic("length of eval proofs in fri proof should equal length of initial merkle caps")
}
for i := 0; i < len(initialMerkleCaps); i++ {
evals := proof.EvalsProofs[i].Elements
merkleProof := proof.EvalsProofs[i].MerkleProof
cap := initialMerkleCaps[i]
f.verifyMerkleProofToCapWithCapIndex(evals, xIndexBits, capIndexBits, cap, &merkleProof)
}
}
// / We decompose FRI query indices into bits without verifying that the decomposition given by
// / the prover is the canonical one. In particular, if `x_index < 2^field_bits - p`, then the
// / prover could supply the binary encoding of either `x_index` or `x_index + p`, since they are
// / congruent mod `p`. However, this only occurs with probability
// / p_ambiguous = (2^field_bits - p) / p
// / which is small for the field that we use in practice.
// /
// / In particular, the soundness error of one FRI query is roughly the codeword rate, which
// / is much larger than this ambiguous-element probability given any reasonable parameters.
// / Thus ambiguous elements contribute a negligible amount to soundness error.
// /
// / Here we compare the probabilities as a sanity check, to verify the claim above.
func (f *Chip) assertNoncanonicalIndicesOK() {
numAmbiguousElems := uint64(math.MaxUint64) - goldilocks.Modulus().Uint64() + 1
queryError := f.friParams.Config.Rate()
pAmbiguous := float64(numAmbiguousElems) / float64(goldilocks.Modulus().Uint64())
// TODO: Check that pAmbiguous value is the same as the one in plonky2 verifier
if pAmbiguous >= queryError*1e-5 {
panic("A non-negligible portion of field elements are in the range that permits non-canonical encodings. Need to do more analysis or enforce canonical encodings.")
}
}
func (f *Chip) expFromBitsConstBase(
base goldilocks.Element,
exponentBits []frontend.Variable,
) gl.Variable {
product := gl.One()
for i, bit := range exponentBits {
// If the bit is on, we multiply product by base^pow.
// We can arithmetize this as:
// product *= 1 + bit (base^pow - 1)
// product = (base^pow - 1) product bit + product
pow := int64(1 << i)
basePow := goldilocks.NewElement(0)
basePow.Exp(base, big.NewInt(pow))
basePowVariable := gl.NewVariable(basePow.Uint64() - 1)
product = f.gl.Add(
f.gl.Mul(
f.gl.Mul(
basePowVariable,
product,
),
gl.NewVariable(bit),
),
product,
)
}
return product
}
func (f *Chip) calculateSubgroupX(
xIndexBits []frontend.Variable,
nLog uint64,
) gl.Variable {
// Compute x from its index
// `subgroup_x` is `subgroup[x_index]`, i.e., the actual field element in the domain.
// TODO - Make these as global values
g := gl.NewVariable(gl.MULTIPLICATIVE_GROUP_GENERATOR.Uint64())
base := gl.PrimitiveRootOfUnity(nLog)
// Create a reverse list of xIndexBits
xIndexBitsRev := make([]frontend.Variable, 0)
for i := len(xIndexBits) - 1; i >= 0; i-- {
xIndexBitsRev = append(xIndexBitsRev, xIndexBits[i])
}
product := f.expFromBitsConstBase(base, xIndexBitsRev)
return f.gl.Mul(g, product)
}
func (f *Chip) friCombineInitial(
instance InstanceInfo,
proof types.FriInitialTreeProof,
friAlpha gl.QuadraticExtensionVariable,
subgroupX_QE gl.QuadraticExtensionVariable,
precomputedReducedEval []gl.QuadraticExtensionVariable,
) gl.QuadraticExtensionVariable {
sum := gl.ZeroExtension()
if len(instance.Batches) != len(precomputedReducedEval) {
panic("len(openings) != len(precomputedReducedEval)")
}
for i := 0; i < len(instance.Batches); i++ {
batch := instance.Batches[i]
reducedOpenings := precomputedReducedEval[i]
point := batch.Point
evals := make([]gl.QuadraticExtensionVariable, 0)
for _, polynomial := range batch.Polynomials {
evals = append(
evals,
gl.QuadraticExtensionVariable{
proof.EvalsProofs[polynomial.OracleIndex].Elements[polynomial.PolynomialInfo],
gl.Zero(),
},
)
}
reducedEvals := f.gl.ReduceWithPowers(evals, friAlpha)
numerator := f.gl.SubExtensionNoReduce(reducedEvals, reducedOpenings)
denominator := f.gl.SubExtension(subgroupX_QE, point)
sum = f.gl.MulExtension(f.gl.ExpExtension(friAlpha, uint64(len(evals))), sum)
sum = f.gl.MulAddExtension(
numerator,
f.gl.InverseExtension(denominator),
sum,
)
}
return sum
}
func (f *Chip) finalPolyEval(finalPoly types.PolynomialCoeffs, point gl.QuadraticExtensionVariable) gl.QuadraticExtensionVariable {
ret := gl.ZeroExtension()
for i := len(finalPoly.Coeffs) - 1; i >= 0; i-- {
ret = f.gl.MulAddExtension(ret, point, finalPoly.Coeffs[i])
}
return ret
}
func (f *Chip) interpolate(
x gl.QuadraticExtensionVariable,
xPoints []gl.QuadraticExtensionVariable,
yPoints []gl.QuadraticExtensionVariable,
barycentricWeights []gl.QuadraticExtensionVariable,
) gl.QuadraticExtensionVariable {
if len(xPoints) != len(yPoints) || len(xPoints) != len(barycentricWeights) {
panic("length of xPoints, yPoints, and barycentricWeights are inconsistent")
}
lX := gl.OneExtension()
for i := 0; i < len(xPoints); i++ {
lX = f.gl.SubMulExtension(x, xPoints[i], lX)
}
sum := gl.ZeroExtension()
for i := 0; i < len(xPoints); i++ {
sum = f.gl.AddExtension(
f.gl.MulExtension(
f.gl.DivExtension(
barycentricWeights[i],
f.gl.SubExtension(
x,
xPoints[i],
),
),
yPoints[i],
),
sum,
)
}
interpolation := f.gl.MulExtension(lX, sum)
returnField := interpolation
// Now check if x is already within the xPoints
for i := 0; i < len(xPoints); i++ {
returnField = f.gl.Lookup(
f.gl.IsZero(f.gl.SubExtension(x, xPoints[i])),
returnField,
yPoints[i],
)
}
return returnField
}
func (f *Chip) computeEvaluation(
x gl.Variable,
xIndexWithinCosetBits []frontend.Variable,
arityBits uint64,
evals []gl.QuadraticExtensionVariable,
beta gl.QuadraticExtensionVariable,
) gl.QuadraticExtensionVariable {
arity := 1 << arityBits
if (len(evals)) != arity {
panic("len(evals) ! arity")
}
if arityBits > 8 {
panic("currently assuming that arityBits is <= 8")
}
g := gl.PrimitiveRootOfUnity(arityBits)
gInv := goldilocks.NewElement(0)
gInv.Exp(g, big.NewInt(int64(arity-1)))
// The evaluation vector needs to be reordered first. Permute the evals array such that each
// element's new index is the bit reverse of it's original index.
// TODO: Optimization - Since the size of the evals array should be constant (e.g. 2^arityBits),
// we can just hard code the permutation.
permutedEvals := make([]gl.QuadraticExtensionVariable, len(evals))
for i := uint8(0); i < uint8(len(evals)); i++ {
newIndex := bits.Reverse8(i) >> arityBits
permutedEvals[newIndex] = evals[i]
}
// Want `g^(arity - rev_x_index_within_coset)` as in the out-of-circuit version. Compute it
// as `(g^-1)^rev_x_index_within_coset`.
revXIndexWithinCosetBits := make([]frontend.Variable, len(xIndexWithinCosetBits))
for i := 0; i < len(xIndexWithinCosetBits); i++ {
revXIndexWithinCosetBits[len(xIndexWithinCosetBits)-1-i] = xIndexWithinCosetBits[i]
}
start := f.expFromBitsConstBase(gInv, revXIndexWithinCosetBits)
cosetStart := f.gl.Mul(start, x)
xPoints := make([]gl.QuadraticExtensionVariable, len(evals))
yPoints := permutedEvals
// TODO: Make g_F a constant
g_F := gl.NewVariable(g.Uint64()).ToQuadraticExtension()
xPoints[0] = gl.QuadraticExtensionVariable{cosetStart, gl.Zero()}
for i := 1; i < len(evals); i++ {
xPoints[i] = f.gl.MulExtension(xPoints[i-1], g_F)
}
// TODO: This is n^2. Is there a way to do this better?
// Compute the barycentric weights
barycentricWeights := make([]gl.QuadraticExtensionVariable, len(xPoints))
for i := 0; i < len(xPoints); i++ {
barycentricWeights[i] = gl.OneExtension()
for j := 0; j < len(xPoints); j++ {
if i != j {
barycentricWeights[i] = f.gl.SubMulExtension(
xPoints[i],
xPoints[j],
barycentricWeights[i],
)
}
}
// Take the inverse of the barycentric weights
// TODO: Can provide a witness to this value
barycentricWeights[i] = f.gl.InverseExtension(barycentricWeights[i])
}
return f.interpolate(beta, xPoints, yPoints, barycentricWeights)
}
func (f *Chip) verifyQueryRound(
instance InstanceInfo,
challenges *types.FriChallenges,
precomputedReducedEval []gl.QuadraticExtensionVariable,
initialMerkleCaps []types.FriMerkleCap,
proof *types.FriProof,
xIndex gl.Variable,
n uint64,
nLog uint64,
roundProof *types.FriQueryRound,
) {
f.assertNoncanonicalIndicesOK()
xIndex = f.gl.Reduce(xIndex)
xIndexBits := f.api.ToBinary(xIndex.Limb, 64)[0 : f.friParams.DegreeBits+f.friParams.Config.RateBits]
capIndexBits := xIndexBits[len(xIndexBits)-int(f.friParams.Config.CapHeight):]
f.verifyInitialProof(xIndexBits, &roundProof.InitialTreesProof, initialMerkleCaps, capIndexBits)
subgroupX := f.calculateSubgroupX(
xIndexBits,
nLog,
)
subgroupX_QE := subgroupX.ToQuadraticExtension()
oldEval := f.friCombineInitial(
instance,
roundProof.InitialTreesProof,
challenges.FriAlpha,
subgroupX_QE,
precomputedReducedEval,
)
for i, arityBits := range f.friParams.ReductionArityBits {
evals := roundProof.Steps[i].Evals
cosetIndexBits := xIndexBits[arityBits:]
xIndexWithinCosetBits := xIndexBits[:arityBits]
// Assumes that the arity bits will be 4. That means that the range of
// xIndexWithCoset is [0,2^4-1]. This is based on plonky2's circuit recursive
// config: https://github.com/mir-protocol/plonky2/blob/main/plonky2/src/plonk/circuit_data.rs#L63
// Will use a two levels tree of 4-selector gadgets.
if arityBits != 4 {
panic("assuming arity bits is 4")
}
const NUM_LEAF_LOOKUPS = 4
var leafLookups [NUM_LEAF_LOOKUPS]gl.QuadraticExtensionVariable
// First create the "leaf" lookup2 circuits
// The will use the least significant bits of the xIndexWithCosetBits array
for i := 0; i < NUM_LEAF_LOOKUPS; i++ {
leafLookups[i] = f.gl.Lookup2(
xIndexWithinCosetBits[0],
xIndexWithinCosetBits[1],
evals[i*NUM_LEAF_LOOKUPS],
evals[i*NUM_LEAF_LOOKUPS+1],
evals[i*NUM_LEAF_LOOKUPS+2],
evals[i*NUM_LEAF_LOOKUPS+3],
)
}
// Use the most 2 significant bits of the xIndexWithCosetBits array for the "root" lookup
newEval := f.gl.Lookup2(
xIndexWithinCosetBits[2],
xIndexWithinCosetBits[3],
leafLookups[0],
leafLookups[1],
leafLookups[2],
leafLookups[3],
)
f.gl.AssertIsEqual(newEval[0], oldEval[0])
f.gl.AssertIsEqual(newEval[1], oldEval[1])
oldEval = f.computeEvaluation(
subgroupX,
xIndexWithinCosetBits,
arityBits,
evals,
challenges.FriBetas[i],
)
// Convert evals (array of QE) to fields by taking their 0th degree coefficients
fieldEvals := make([]gl.Variable, 0, 2*len(evals))
for j := 0; j < len(evals); j++ {
fieldEvals = append(fieldEvals, evals[j][0])
fieldEvals = append(fieldEvals, evals[j][1])
}
f.verifyMerkleProofToCapWithCapIndex(
fieldEvals,
cosetIndexBits,
capIndexBits,
proof.CommitPhaseMerkleCaps[i],
&roundProof.Steps[i].MerkleProof,
)
// Update the point x to x^arity.
for j := uint64(0); j < arityBits; j++ {
subgroupX = f.gl.Mul(subgroupX, subgroupX)
}
xIndexBits = cosetIndexBits
}
subgroupX_QE = subgroupX.ToQuadraticExtension()
finalPolyEval := f.finalPolyEval(proof.FinalPoly, subgroupX_QE)
f.gl.AssertIsEqual(oldEval[0], finalPolyEval[0])
f.gl.AssertIsEqual(oldEval[1], finalPolyEval[1])
}
func (f *Chip) VerifyFriProof(
instance InstanceInfo,
openings Openings,
friChallenges *types.FriChallenges,
initialMerkleCaps []types.FriMerkleCap,
friProof *types.FriProof,
) {
// TODO: Check fri config
/* if let Some(max_arity_bits) = params.max_arity_bits() {
self.check_recursion_config::<C>(max_arity_bits);
}
debug_assert_eq!(
params.final_poly_len(),
proof.final_poly.len(),
"Final polynomial has wrong degree."
); */
// Check POW
f.assertLeadingZeros(friChallenges.FriPowResponse, f.friParams.Config)
precomputedReducedEvals := f.fromOpeningsAndAlpha(&openings, friChallenges.FriAlpha)
// Size of the LDE domain.
nLog := f.friParams.DegreeBits + f.friParams.Config.RateBits
n := uint64(math.Pow(2, float64(nLog)))
if len(friChallenges.FriQueryIndices) != len(friProof.QueryRoundProofs) {
panic(fmt.Sprintf(
"Number of query indices (%d) should equal number of query round proofs (%d)",
len(friChallenges.FriQueryIndices),
len(friProof.QueryRoundProofs),
))
}
for idx, xIndex := range friChallenges.FriQueryIndices {
roundProof := friProof.QueryRoundProofs[idx]
f.verifyQueryRound(
instance,
friChallenges,
precomputedReducedEvals,
initialMerkleCaps,
friProof,
xIndex,
n,
nLog,
&roundProof,
)
}
}