package plonky2_verifier
|
|
|
|
import (
|
|
"fmt"
|
|
"gnark-plonky2-verifier/field"
|
|
. "gnark-plonky2-verifier/field"
|
|
"gnark-plonky2-verifier/poseidon"
|
|
"math"
|
|
"math/big"
|
|
"math/bits"
|
|
|
|
"github.com/consensys/gnark-crypto/field/goldilocks"
|
|
"github.com/consensys/gnark/frontend"
|
|
)
|
|
|
|
type FriChip struct {
|
|
api frontend.API `gnark:"-"`
|
|
fieldAPI frontend.API `gnark:"-"`
|
|
qeAPI *QuadraticExtensionAPI `gnark:"-"`
|
|
hashAPI *HashAPI `gnark:"-"`
|
|
|
|
poseidonChip *poseidon.PoseidonChip
|
|
|
|
friParams *FriParams `gnark:"-"`
|
|
verifierOnlyCircuitData *VerifierOnlyCircuitData `gnark:"-"`
|
|
}
|
|
|
|
func NewFriChip(
|
|
api frontend.API,
|
|
fieldAPI frontend.API,
|
|
qeAPI *QuadraticExtensionAPI,
|
|
hashAPI *HashAPI,
|
|
poseidonChip *poseidon.PoseidonChip,
|
|
friParams *FriParams,
|
|
) *FriChip {
|
|
return &FriChip{
|
|
api: api,
|
|
fieldAPI: fieldAPI,
|
|
qeAPI: qeAPI,
|
|
hashAPI: hashAPI,
|
|
poseidonChip: poseidonChip,
|
|
friParams: friParams,
|
|
}
|
|
}
|
|
|
|
func (f *FriChip) assertLeadingZeros(powWitness F, friConfig FriConfig) {
|
|
// Asserts that powWitness'es big-endian bit representation has at least `leading_zeros` leading zeros.
|
|
// Note that this is assuming that the Goldilocks field is being used. Specfically that the
|
|
// field is 64 bits long
|
|
maxPowWitness := uint64(math.Pow(2, float64(64-friConfig.ProofOfWorkBits))) - 1
|
|
f.fieldAPI.AssertIsLessOrEqual(powWitness, field.NewFieldElement(maxPowWitness))
|
|
}
|
|
|
|
func (f *FriChip) fromOpeningsAndAlpha(openings *FriOpenings, alpha QuadraticExtension) []QuadraticExtension {
|
|
// One reduced opening for all openings evaluated at point Zeta.
|
|
// Another one for all openings evaluated at point Zeta * Omega (which is only PlonkZsNext polynomial)
|
|
|
|
reducedOpenings := make([]QuadraticExtension, 0, 2)
|
|
for _, batch := range openings.Batches {
|
|
reducedOpenings = append(reducedOpenings, f.qeAPI.ReduceWithPowers(batch.Values, alpha))
|
|
}
|
|
|
|
return reducedOpenings
|
|
}
|
|
|
|
func (f *FriChip) hashOrNoop(data []F) Hash {
|
|
var elements Hash
|
|
if len(data) <= 4 {
|
|
// Pad the data to have a size of 4
|
|
for i, inputElement := range data {
|
|
elements[i] = inputElement
|
|
}
|
|
for i := len(data); i < 4; i++ {
|
|
elements[i] = field.ZERO_F
|
|
}
|
|
|
|
return elements
|
|
} else {
|
|
hashOutput := f.poseidonChip.HashNToMNoPad(data, 4)
|
|
|
|
if len(hashOutput) != len(elements) {
|
|
panic("The length of hashOutput and elements is different")
|
|
}
|
|
|
|
for i, hashField := range hashOutput {
|
|
elements[i] = hashField
|
|
}
|
|
|
|
return elements
|
|
}
|
|
}
|
|
|
|
func (f *FriChip) verifyMerkleProofToCapWithCapIndex(leafData []F, leafIndexBits []frontend.Variable, capIndexBits []frontend.Variable, merkleCap MerkleCap, proof *MerkleProof) {
|
|
currentDigest := f.hashOrNoop(leafData)
|
|
fourZeros := [4]F{field.ZERO_F, field.ZERO_F, field.ZERO_F, field.ZERO_F}
|
|
for i, sibling := range proof.Siblings {
|
|
bit := leafIndexBits[i]
|
|
|
|
var leftSiblingState poseidon.PoseidonState
|
|
copy(leftSiblingState[0:4], sibling[0:4])
|
|
copy(leftSiblingState[4:8], currentDigest[0:4])
|
|
copy(leftSiblingState[8:12], fourZeros[0:4])
|
|
|
|
leftHash := f.poseidonChip.Poseidon(leftSiblingState)
|
|
|
|
var leftHashCompress Hash
|
|
leftHashCompress[0] = leftHash[0]
|
|
leftHashCompress[1] = leftHash[1]
|
|
leftHashCompress[2] = leftHash[2]
|
|
leftHashCompress[3] = leftHash[3]
|
|
|
|
var rightSiblingState poseidon.PoseidonState
|
|
copy(rightSiblingState[0:4], currentDigest[0:4])
|
|
copy(rightSiblingState[4:8], sibling[0:4])
|
|
copy(rightSiblingState[8:12], fourZeros[0:4])
|
|
|
|
rightHash := f.poseidonChip.Poseidon(rightSiblingState)
|
|
|
|
var rightHashCompress Hash
|
|
rightHashCompress[0] = rightHash[0]
|
|
rightHashCompress[1] = rightHash[1]
|
|
rightHashCompress[2] = rightHash[2]
|
|
rightHashCompress[3] = rightHash[3]
|
|
|
|
currentDigest = f.hashAPI.SelectHash(bit, leftHashCompress, rightHashCompress)
|
|
}
|
|
|
|
// We assume that the cap_height is 4. Create two levels of the Lookup2 circuit
|
|
if len(capIndexBits) != 4 || len(merkleCap) != 16 {
|
|
errorMsg, _ := fmt.Printf(
|
|
"capIndexBits length should be 4 and the merkleCap length should be 16. Actual values (capIndexBits: %d, merkleCap: %d)\n",
|
|
len(capIndexBits),
|
|
len(merkleCap),
|
|
)
|
|
panic(errorMsg)
|
|
}
|
|
|
|
const NUM_LEAF_LOOKUPS = 4
|
|
var leafLookups [NUM_LEAF_LOOKUPS]Hash
|
|
// First create the "leaf" lookup2 circuits
|
|
// The will use the least significant bits of the capIndexBits array
|
|
for i := 0; i < NUM_LEAF_LOOKUPS; i++ {
|
|
leafLookups[i] = f.hashAPI.Lookup2Hash(
|
|
capIndexBits[0], capIndexBits[1],
|
|
merkleCap[i*NUM_LEAF_LOOKUPS], merkleCap[i*NUM_LEAF_LOOKUPS+1], merkleCap[i*NUM_LEAF_LOOKUPS+2], merkleCap[i*NUM_LEAF_LOOKUPS+3],
|
|
)
|
|
}
|
|
|
|
// Use the most 2 significant bits of the capIndexBits array for the "root" lookup
|
|
merkleCapEntry := f.hashAPI.Lookup2Hash(capIndexBits[2], capIndexBits[3], leafLookups[0], leafLookups[1], leafLookups[2], leafLookups[3])
|
|
f.hashAPI.AssertIsEqualHash(currentDigest, merkleCapEntry)
|
|
}
|
|
|
|
func (f *FriChip) verifyInitialProof(xIndexBits []frontend.Variable, proof *FriInitialTreeProof, initialMerkleCaps []MerkleCap, capIndexBits []frontend.Variable) {
|
|
if len(proof.EvalsProofs) != len(initialMerkleCaps) {
|
|
panic("length of eval proofs in fri proof should equal length of initial merkle caps")
|
|
}
|
|
|
|
for i := 0; i < len(initialMerkleCaps); i++ {
|
|
evals := proof.EvalsProofs[i].Elements
|
|
merkleProof := proof.EvalsProofs[i].MerkleProof
|
|
cap := initialMerkleCaps[i]
|
|
f.verifyMerkleProofToCapWithCapIndex(evals, xIndexBits, capIndexBits, cap, &merkleProof)
|
|
}
|
|
}
|
|
|
|
// / We decompose FRI query indices into bits without verifying that the decomposition given by
|
|
// / the prover is the canonical one. In particular, if `x_index < 2^field_bits - p`, then the
|
|
// / prover could supply the binary encoding of either `x_index` or `x_index + p`, since they are
|
|
// / congruent mod `p`. However, this only occurs with probability
|
|
// / p_ambiguous = (2^field_bits - p) / p
|
|
// / which is small for the field that we use in practice.
|
|
// /
|
|
// / In particular, the soundness error of one FRI query is roughly the codeword rate, which
|
|
// / is much larger than this ambiguous-element probability given any reasonable parameters.
|
|
// / Thus ambiguous elements contribute a negligible amount to soundness error.
|
|
// /
|
|
// / Here we compare the probabilities as a sanity check, to verify the claim above.
|
|
func (f *FriChip) assertNoncanonicalIndicesOK() {
|
|
numAmbiguousElems := uint64(math.MaxUint64) - goldilocks.Modulus().Uint64() + 1
|
|
queryError := f.friParams.Config.rate()
|
|
pAmbiguous := float64(numAmbiguousElems) / float64(goldilocks.Modulus().Uint64())
|
|
|
|
// TODO: Check that pAmbiguous value is the same as the one in plonky2 verifier
|
|
if pAmbiguous >= queryError*1e-5 {
|
|
panic("A non-negligible portion of field elements are in the range that permits non-canonical encodings. Need to do more analysis or enforce canonical encodings.")
|
|
}
|
|
}
|
|
|
|
func (f *FriChip) expFromBitsConstBase(
|
|
base goldilocks.Element,
|
|
exponentBits []frontend.Variable,
|
|
) F {
|
|
product := ONE_F
|
|
for i, bit := range exponentBits {
|
|
pow := int64(1 << i)
|
|
// If the bit is on, we multiply product by base^pow.
|
|
// We can arithmetize this as:
|
|
// product *= 1 + bit (base^pow - 1)
|
|
// product = (base^pow - 1) product bit + product
|
|
basePow := goldilocks.NewElement(0)
|
|
basePow.Exp(base, big.NewInt(pow))
|
|
|
|
basePowElement := NewFieldElement(basePow.Uint64() - 1)
|
|
|
|
product = f.fieldAPI.Add(
|
|
f.fieldAPI.Mul(
|
|
basePowElement,
|
|
product,
|
|
bit,
|
|
),
|
|
product,
|
|
).(F)
|
|
}
|
|
|
|
return product
|
|
}
|
|
|
|
func (f *FriChip) calculateSubgroupX(
|
|
xIndexBits []frontend.Variable,
|
|
nLog uint64,
|
|
) F {
|
|
// Compute x from its index
|
|
// `subgroup_x` is `subgroup[x_index]`, i.e., the actual field element in the domain.
|
|
// TODO - Make these as global values
|
|
g := field.NewFieldElement(field.GOLDILOCKS_MULTIPLICATIVE_GROUP_GENERATOR.Uint64())
|
|
base := field.GoldilocksPrimitiveRootOfUnity(nLog)
|
|
|
|
// Create a reverse list of xIndexBits
|
|
xIndexBitsRev := make([]frontend.Variable, 0)
|
|
for i := len(xIndexBits) - 1; i >= 0; i-- {
|
|
xIndexBitsRev = append(xIndexBitsRev, xIndexBits[i])
|
|
}
|
|
|
|
product := f.expFromBitsConstBase(base, xIndexBitsRev)
|
|
|
|
return f.fieldAPI.Mul(g, product).(F)
|
|
}
|
|
|
|
func (f *FriChip) friCombineInitial(
|
|
instance FriInstanceInfo,
|
|
proof FriInitialTreeProof,
|
|
friAlpha QuadraticExtension,
|
|
subgroupX_QE QuadraticExtension,
|
|
precomputedReducedEval []QuadraticExtension,
|
|
) QuadraticExtension {
|
|
sum := f.qeAPI.ZERO_QE
|
|
|
|
if len(instance.Batches) != len(precomputedReducedEval) {
|
|
panic("len(openings) != len(precomputedReducedEval)")
|
|
}
|
|
|
|
for i := 0; i < len(instance.Batches); i++ {
|
|
batch := instance.Batches[i]
|
|
reducedOpenings := precomputedReducedEval[i]
|
|
|
|
point := batch.Point
|
|
evals := make([]QuadraticExtension, 0)
|
|
for _, polynomial := range batch.Polynomials {
|
|
evals = append(
|
|
evals,
|
|
QuadraticExtension{proof.EvalsProofs[polynomial.OracleIndex].Elements[polynomial.PolynomialInfo], field.ZERO_F},
|
|
)
|
|
}
|
|
|
|
reducedEvals := f.qeAPI.ReduceWithPowers(evals, friAlpha)
|
|
numerator := f.qeAPI.SubExtension(reducedEvals, reducedOpenings)
|
|
denominator := f.qeAPI.SubExtension(subgroupX_QE, point)
|
|
sum = f.qeAPI.MulExtension(f.qeAPI.ExpU64Extension(friAlpha, uint64(len(evals))), sum)
|
|
sum = f.qeAPI.AddExtension(
|
|
f.qeAPI.DivExtension(
|
|
numerator,
|
|
denominator,
|
|
),
|
|
sum,
|
|
)
|
|
}
|
|
|
|
return sum
|
|
}
|
|
|
|
func (f *FriChip) finalPolyEval(finalPoly PolynomialCoeffs, point QuadraticExtension) QuadraticExtension {
|
|
ret := f.qeAPI.ZERO_QE
|
|
for i := len(finalPoly.Coeffs) - 1; i >= 0; i-- {
|
|
ret = f.qeAPI.AddExtension(
|
|
f.qeAPI.MulExtension(
|
|
ret,
|
|
point,
|
|
),
|
|
finalPoly.Coeffs[i],
|
|
)
|
|
}
|
|
return ret
|
|
}
|
|
|
|
func (f *FriChip) interpolate(x QuadraticExtension, xPoints []QuadraticExtension, yPoints []QuadraticExtension, barycentricWeights []QuadraticExtension) QuadraticExtension {
|
|
if len(xPoints) != len(yPoints) || len(xPoints) != len(barycentricWeights) {
|
|
panic("length of xPoints, yPoints, and barycentricWeights are inconsistent")
|
|
}
|
|
|
|
lX := f.qeAPI.ONE_QE
|
|
for i := 0; i < len(xPoints); i++ {
|
|
lX = f.qeAPI.MulExtension(
|
|
lX,
|
|
f.qeAPI.SubExtension(
|
|
x,
|
|
xPoints[i],
|
|
),
|
|
)
|
|
}
|
|
|
|
sum := f.qeAPI.ZERO_QE
|
|
for i := 0; i < len(xPoints); i++ {
|
|
sum = f.qeAPI.AddExtension(
|
|
f.qeAPI.MulExtension(
|
|
f.qeAPI.DivExtension(
|
|
barycentricWeights[i],
|
|
f.qeAPI.SubExtension(
|
|
x,
|
|
xPoints[i],
|
|
),
|
|
),
|
|
yPoints[i],
|
|
),
|
|
sum,
|
|
)
|
|
}
|
|
|
|
interpolation := f.qeAPI.MulExtension(lX, sum)
|
|
|
|
returnField := interpolation
|
|
// Now check if x is already within the xPoints
|
|
for i := 0; i < len(xPoints); i++ {
|
|
returnField = f.qeAPI.Select(
|
|
f.qeAPI.IsZero(f.qeAPI.SubExtension(x, xPoints[i])),
|
|
yPoints[i],
|
|
returnField,
|
|
)
|
|
}
|
|
|
|
return returnField
|
|
}
|
|
|
|
func (f *FriChip) computeEvaluation(
|
|
x F,
|
|
xIndexWithinCosetBits []frontend.Variable,
|
|
arityBits uint64,
|
|
evals []QuadraticExtension,
|
|
beta QuadraticExtension,
|
|
) QuadraticExtension {
|
|
arity := 1 << arityBits
|
|
if (len(evals)) != arity {
|
|
panic("len(evals) ! arity")
|
|
}
|
|
if arityBits > 8 {
|
|
panic("currently assuming that arityBits is <= 8")
|
|
}
|
|
|
|
g := field.GoldilocksPrimitiveRootOfUnity(arityBits)
|
|
gInv := goldilocks.NewElement(0)
|
|
gInv.Exp(g, big.NewInt(int64(arity-1)))
|
|
|
|
// The evaluation vector needs to be reordered first. Permute the evals array such that each
|
|
// element's new index is the bit reverse of it's original index.
|
|
// TODO: Optimization - Since the size of the evals array should be constant (e.g. 2^arityBits),
|
|
// we can just hard code the permutation.
|
|
permutedEvals := make([]QuadraticExtension, len(evals))
|
|
for i := uint8(0); i < uint8(len(evals)); i++ {
|
|
newIndex := bits.Reverse8(i) >> arityBits
|
|
permutedEvals[newIndex] = evals[i]
|
|
}
|
|
|
|
// Want `g^(arity - rev_x_index_within_coset)` as in the out-of-circuit version. Compute it
|
|
// as `(g^-1)^rev_x_index_within_coset`.
|
|
revXIndexWithinCosetBits := make([]frontend.Variable, len(xIndexWithinCosetBits))
|
|
for i := 0; i < len(xIndexWithinCosetBits); i++ {
|
|
revXIndexWithinCosetBits[len(xIndexWithinCosetBits)-1-i] = xIndexWithinCosetBits[i]
|
|
}
|
|
start := f.expFromBitsConstBase(gInv, revXIndexWithinCosetBits)
|
|
cosetStart := f.fieldAPI.Mul(start, x).(F)
|
|
|
|
xPoints := make([]QuadraticExtension, len(evals))
|
|
yPoints := permutedEvals
|
|
|
|
// TODO: Make g_F a constant
|
|
g_F := f.qeAPI.FieldToQE(NewFieldElement(g.Uint64()))
|
|
xPoints[0] = f.qeAPI.FieldToQE(cosetStart)
|
|
for i := 1; i < len(evals); i++ {
|
|
xPoints[i] = f.qeAPI.MulExtension(xPoints[i-1], g_F)
|
|
}
|
|
|
|
// TODO: This is n^2. Is there a way to do this better?
|
|
// Compute the barycentric weights
|
|
barycentricWeights := make([]QuadraticExtension, len(xPoints))
|
|
for i := 0; i < len(xPoints); i++ {
|
|
barycentricWeights[i] = f.qeAPI.ONE_QE
|
|
for j := 0; j < len(xPoints); j++ {
|
|
if i != j {
|
|
barycentricWeights[i] = f.qeAPI.MulExtension(
|
|
f.qeAPI.SubExtension(xPoints[i], xPoints[j]),
|
|
barycentricWeights[i],
|
|
)
|
|
}
|
|
}
|
|
// Take the inverse of the barycentric weights
|
|
// TODO: Can provide a witness to this value
|
|
barycentricWeights[i] = f.qeAPI.InverseExtension(barycentricWeights[i])
|
|
}
|
|
|
|
return f.interpolate(beta, xPoints, yPoints, barycentricWeights)
|
|
}
|
|
|
|
func (f *FriChip) verifyQueryRound(
|
|
instance FriInstanceInfo,
|
|
challenges *FriChallenges,
|
|
precomputedReducedEval []QuadraticExtension,
|
|
initialMerkleCaps []MerkleCap,
|
|
proof *FriProof,
|
|
xIndex F,
|
|
n uint64,
|
|
nLog uint64,
|
|
roundProof *FriQueryRound,
|
|
) {
|
|
f.assertNoncanonicalIndicesOK()
|
|
xIndexBits := f.fieldAPI.ToBinary(xIndex, int(nLog))
|
|
capIndexBits := xIndexBits[len(xIndexBits)-int(f.friParams.Config.CapHeight):]
|
|
|
|
f.verifyInitialProof(xIndexBits, &roundProof.InitialTreesProof, initialMerkleCaps, capIndexBits)
|
|
|
|
subgroupX := f.calculateSubgroupX(
|
|
xIndexBits,
|
|
nLog,
|
|
)
|
|
|
|
subgroupX_QE := QuadraticExtension{subgroupX, field.ZERO_F}
|
|
|
|
oldEval := f.friCombineInitial(
|
|
instance,
|
|
roundProof.InitialTreesProof,
|
|
challenges.FriAlpha,
|
|
subgroupX_QE,
|
|
precomputedReducedEval,
|
|
)
|
|
|
|
for i, arityBits := range f.friParams.ReductionArityBits {
|
|
evals := roundProof.Steps[i].Evals
|
|
|
|
cosetIndexBits := xIndexBits[arityBits:]
|
|
xIndexWithinCosetBits := xIndexBits[:arityBits]
|
|
|
|
// Assumes that the arity bits will be 4. That means that the range of
|
|
// xIndexWithCoset is [0,2^4-1]. This is based on plonky2's circuit recursive
|
|
// config: https://github.com/mir-protocol/plonky2/blob/main/plonky2/src/plonk/circuit_data.rs#L63
|
|
// Will use a two levels tree of 4-selector gadgets.
|
|
if arityBits != 4 {
|
|
panic("assuming arity bits is 4")
|
|
}
|
|
|
|
const NUM_LEAF_LOOKUPS = 4
|
|
var leafLookups [NUM_LEAF_LOOKUPS]QuadraticExtension
|
|
// First create the "leaf" lookup2 circuits
|
|
// The will use the least significant bits of the xIndexWithCosetBits array
|
|
for i := 0; i < NUM_LEAF_LOOKUPS; i++ {
|
|
leafLookups[i] = f.qeAPI.Lookup2(
|
|
xIndexWithinCosetBits[0],
|
|
xIndexWithinCosetBits[1],
|
|
evals[i*NUM_LEAF_LOOKUPS],
|
|
evals[i*NUM_LEAF_LOOKUPS+1],
|
|
evals[i*NUM_LEAF_LOOKUPS+2],
|
|
evals[i*NUM_LEAF_LOOKUPS+3],
|
|
)
|
|
}
|
|
|
|
// Use the most 2 significant bits of the xIndexWithCosetBits array for the "root" lookup
|
|
newEval := f.qeAPI.Lookup2(
|
|
xIndexWithinCosetBits[2],
|
|
xIndexWithinCosetBits[3],
|
|
leafLookups[0],
|
|
leafLookups[1],
|
|
leafLookups[2],
|
|
leafLookups[3],
|
|
)
|
|
|
|
f.qeAPI.AssertIsEqual(newEval, oldEval)
|
|
|
|
oldEval = f.computeEvaluation(
|
|
subgroupX,
|
|
xIndexWithinCosetBits,
|
|
arityBits,
|
|
evals,
|
|
challenges.FriBetas[i],
|
|
)
|
|
|
|
// Convert evals (array of QE) to fields by taking their 0th degree coefficients
|
|
fieldEvals := make([]F, 0, 2*len(evals))
|
|
for j := 0; j < len(evals); j++ {
|
|
fieldEvals = append(fieldEvals, evals[j][0])
|
|
fieldEvals = append(fieldEvals, evals[j][1])
|
|
}
|
|
f.verifyMerkleProofToCapWithCapIndex(
|
|
fieldEvals,
|
|
cosetIndexBits,
|
|
capIndexBits,
|
|
proof.CommitPhaseMerkleCaps[i],
|
|
&roundProof.Steps[i].MerkleProof,
|
|
)
|
|
|
|
// Update the point x to x^arity.
|
|
for j := uint64(0); j < arityBits; j++ {
|
|
subgroupX = f.fieldAPI.Mul(subgroupX, subgroupX).(F)
|
|
}
|
|
|
|
xIndexBits = cosetIndexBits
|
|
}
|
|
|
|
subgroupX_QE = f.qeAPI.FieldToQE(subgroupX)
|
|
finalPolyEval := f.finalPolyEval(proof.FinalPoly, subgroupX_QE)
|
|
|
|
f.qeAPI.AssertIsEqual(oldEval, finalPolyEval)
|
|
}
|
|
|
|
func (f *FriChip) VerifyFriProof(
|
|
instance FriInstanceInfo,
|
|
openings FriOpenings,
|
|
friChallenges *FriChallenges,
|
|
initialMerkleCaps []MerkleCap,
|
|
friProof *FriProof,
|
|
) {
|
|
// TODO: Check fri config
|
|
/* if let Some(max_arity_bits) = params.max_arity_bits() {
|
|
self.check_recursion_config::<C>(max_arity_bits);
|
|
}
|
|
|
|
debug_assert_eq!(
|
|
params.final_poly_len(),
|
|
proof.final_poly.len(),
|
|
"Final polynomial has wrong degree."
|
|
); */
|
|
|
|
// Check POW
|
|
f.assertLeadingZeros(friChallenges.FriPowResponse, f.friParams.Config)
|
|
|
|
precomputedReducedEvals := f.fromOpeningsAndAlpha(&openings, friChallenges.FriAlpha)
|
|
|
|
// Size of the LDE domain.
|
|
nLog := f.friParams.DegreeBits + f.friParams.Config.RateBits
|
|
n := uint64(math.Pow(2, float64(nLog)))
|
|
|
|
if len(friChallenges.FriQueryIndices) != len(friProof.QueryRoundProofs) {
|
|
panic(fmt.Sprintf(
|
|
"Number of query indices (%d) should equal number of query round proofs (%d)",
|
|
len(friChallenges.FriQueryIndices),
|
|
len(friProof.QueryRoundProofs),
|
|
))
|
|
}
|
|
|
|
for idx, xIndex := range friChallenges.FriQueryIndices {
|
|
roundProof := friProof.QueryRoundProofs[idx]
|
|
|
|
f.verifyQueryRound(
|
|
instance,
|
|
friChallenges,
|
|
precomputedReducedEvals,
|
|
initialMerkleCaps,
|
|
friProof,
|
|
xIndex,
|
|
n,
|
|
nLog,
|
|
&roundProof,
|
|
)
|
|
}
|
|
}
|