You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

173 lines
4.5 KiB

package edwards_curve
import (
"fmt"
"math/big"
"github.com/consensys/gnark/frontend"
"github.com/consensys/gnark/std/math/emulated"
)
func New[T, S emulated.FieldParams](api frontend.API) (*Curve[T, S], error) {
var t T
var s S
var gxb, gyb *big.Int
var A, D *big.Int
_, is_25519_t := any(t).(Ed25519)
_, is_25519_s := any(s).(Ed25519Scalars)
if is_25519_t && is_25519_s {
// https://neuromancer.sk/std/other/Ed25519
gxb = newBigInt("216936D3CD6E53FEC0A4E231FDD6DC5C692CC7609525A7B2C9562D608F25D51A")
gyb = newBigInt("6666666666666666666666666666666666666666666666666666666666666658")
A = newBigInt("7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffec")
D = newBigInt("52036cee2b6ffe738cc740797779e89800700a4d4141d8ab75eb4dca135978a3")
} else {
return nil, fmt.Errorf("unknown curve")
}
return newCurve[T, S](
api,
emulated.NewElement[T](A),
emulated.NewElement[T](D),
emulated.NewElement[T](gxb),
emulated.NewElement[T](gyb))
}
func newBigInt(s string) *big.Int {
result, success := new(big.Int).SetString(s, 16)
if !success {
panic("invalid bigint")
}
return result
}
// TODO: could also have a type constraint for curve parameters (fields,
// equation and generator). But for now we don't do arbitrary curves.
type Curve[T, S emulated.FieldParams] struct {
A emulated.Element[T]
D emulated.Element[T]
// api is the native api, we construct it ourselves to be sure
api frontend.API
// baseApi is the api for point operations
baseApi frontend.API
// scalarApi is the api for scalar operations
scalarApi frontend.API
g AffinePoint[T]
}
func (c *Curve[T, S]) Generator() AffinePoint[T] {
return c.g
}
func newCurve[T, S emulated.FieldParams](api frontend.API, A, D, Gx, Gy emulated.Element[T]) (*Curve[T, S], error) {
ba, err := emulated.NewField[T](api)
if err != nil {
return nil, fmt.Errorf("new base api: %w", err)
}
sa, err := emulated.NewField[S](api)
if err != nil {
return nil, fmt.Errorf("new scalar api: %w", err)
}
return &Curve[T, S]{
A: A,
D: D,
api: api,
baseApi: ba,
scalarApi: sa,
g: AffinePoint[T]{
X: Gx,
Y: Gy,
},
}, nil
}
type AffinePoint[T emulated.FieldParams] struct {
X, Y emulated.Element[T]
}
func (c *Curve[T, S]) Neg(p AffinePoint[T]) AffinePoint[T] {
return AffinePoint[T]{
X: p.X,
Y: c.baseApi.Neg(p.Y).(emulated.Element[T]),
}
}
func (c *Curve[T, S]) AssertIsEqual(p, q AffinePoint[T]) {
c.baseApi.AssertIsEqual(p.X, q.X)
c.baseApi.AssertIsEqual(p.Y, q.Y)
}
func (c *Curve[T, S]) AssertIsOnCurve(p AffinePoint[T]) {
xx := c.baseApi.Mul(p.X, p.X)
yy := c.baseApi.Mul(p.Y, p.Y)
fmt.Println(xx)
fmt.Println(c.A)
axx := c.baseApi.Mul(xx, c.A)
lhs := c.baseApi.Add(axx, yy)
dxx := c.baseApi.Mul(xx, c.D)
dxxyy := c.baseApi.Mul(dxx, yy)
rhs := c.baseApi.Add(dxxyy, 1)
c.baseApi.AssertIsEqual(lhs, rhs)
}
// func (c *Curve[T, S]) Add(q, r AffinePoint[T]) AffinePoint[T] {
// // compute lambda = (p1.y-p.y)/(p1.x-p.x)
// lambda := c.baseApi.DivUnchecked(c.baseApi.Sub(r.Y, q.Y), c.baseApi.Sub(r.X, q.X))
// // xr = lambda**2-p.x-p1.x
// xr := c.baseApi.Sub(c.baseApi.Mul(lambda, lambda), c.baseApi.Add(q.X, r.X))
// // p.y = lambda(p.x-xr) - p.y
// py := c.baseApi.Sub(c.baseApi.Mul(lambda, c.baseApi.Sub(q.X, xr)), q.Y)
// return AffinePoint[T]{
// X: xr.(emulated.Element[T]),
// Y: py.(emulated.Element[T]),
// }
// }
// func (c *Curve[T, S]) Double(p AffinePoint[T]) AffinePoint[T] {
// // compute lambda = (3*p1.x**2+a)/2*p1.y, here we assume a=0 (j invariant 0 curve)
// lambda := c.baseApi.DivUnchecked(c.baseApi.Mul(p.X, p.X, 3), c.baseApi.Mul(p.Y, 2))
// // xr = lambda**2-p1.x-p1.x
// xr := c.baseApi.Sub(c.baseApi.Mul(lambda, lambda), c.baseApi.Mul(p.X, 2))
// // p.y = lambda(p.x-xr) - p.y
// py := c.baseApi.Sub(c.baseApi.Mul(lambda, c.baseApi.Sub(p.X, xr)), p.Y)
// return AffinePoint[T]{
// X: xr.(emulated.Element[T]),
// Y: py.(emulated.Element[T]),
// }
// }
func (c *Curve[T, S]) Select(b frontend.Variable, p, q AffinePoint[T]) AffinePoint[T] {
x := c.baseApi.Select(b, p.X, q.X)
y := c.baseApi.Select(b, p.Y, q.Y)
return AffinePoint[T]{
X: x.(emulated.Element[T]),
Y: y.(emulated.Element[T]),
}
}
// func (c *Curve[T, S]) ScalarMul(p AffinePoint[T], s emulated.Element[S]) AffinePoint[T] {
// res := p
// acc := c.Double(p)
// sBits := c.scalarApi.ToBinary(s)
// for i := 1; i < len(sBits); i++ {
// tmp := c.Add(res, acc)
// res = c.Select(sBits[i], tmp, res)
// acc = c.Double(acc)
// }
// tmp := c.Add(res, c.Neg(p))
// res = c.Select(sBits[0], res, tmp)
// return res
// }