|
package plonk
|
|
|
|
import (
|
|
"github.com/consensys/gnark/frontend"
|
|
gl "github.com/succinctlabs/gnark-plonky2-verifier/goldilocks"
|
|
"github.com/succinctlabs/gnark-plonky2-verifier/plonk/gates"
|
|
"github.com/succinctlabs/gnark-plonky2-verifier/poseidon"
|
|
"github.com/succinctlabs/gnark-plonky2-verifier/types"
|
|
)
|
|
|
|
type PlonkChip struct {
|
|
api frontend.API `gnark:"-"`
|
|
|
|
commonData types.CommonCircuitData `gnark:"-"`
|
|
|
|
DEGREE gl.GoldilocksVariable `gnark:"-"`
|
|
DEGREE_BITS_F gl.GoldilocksVariable `gnark:"-"`
|
|
DEGREE_QE gl.QuadraticExtensionVariable `gnark:"-"`
|
|
|
|
evaluateGatesChip *gates.EvaluateGatesChip
|
|
}
|
|
|
|
func NewPlonkChip(api frontend.API, commonData types.CommonCircuitData) *PlonkChip {
|
|
// TODO: Should degreeBits be verified that it fits within the field and that degree is within uint64?
|
|
|
|
evaluateGatesChip := gates.NewEvaluateGatesChip(
|
|
api,
|
|
commonData.Gates,
|
|
commonData.NumGateConstraints,
|
|
commonData.SelectorsInfo,
|
|
)
|
|
|
|
return &PlonkChip{
|
|
api: api,
|
|
|
|
commonData: commonData,
|
|
|
|
DEGREE: gl.NewVariable(1 << commonData.DegreeBits),
|
|
DEGREE_BITS_F: gl.NewVariable(commonData.DegreeBits),
|
|
DEGREE_QE: gl.NewVariable(1 << commonData.DegreeBits).ToQuadraticExtension(),
|
|
|
|
evaluateGatesChip: evaluateGatesChip,
|
|
}
|
|
}
|
|
|
|
func (p *PlonkChip) expPowerOf2Extension(x gl.QuadraticExtensionVariable) gl.QuadraticExtensionVariable {
|
|
glApi := gl.NewGoldilocksApi(p.api)
|
|
for i := uint64(0); i < p.commonData.DegreeBits; i++ {
|
|
x = glApi.MulExtension(x, x)
|
|
}
|
|
return x
|
|
}
|
|
|
|
func (p *PlonkChip) evalL0(x gl.QuadraticExtensionVariable, xPowN gl.QuadraticExtensionVariable) gl.QuadraticExtensionVariable {
|
|
// L_0(x) = (x^n - 1) / (n * (x - 1))
|
|
glApi := gl.NewGoldilocksApi(p.api)
|
|
evalZeroPoly := glApi.SubExtension(
|
|
xPowN,
|
|
gl.OneExtension(),
|
|
)
|
|
denominator := glApi.SubExtension(
|
|
glApi.ScalarMulExtension(x, p.DEGREE),
|
|
p.DEGREE_QE,
|
|
)
|
|
return glApi.DivExtension(
|
|
evalZeroPoly,
|
|
denominator,
|
|
)
|
|
}
|
|
|
|
func (p *PlonkChip) checkPartialProducts(
|
|
numerators []gl.QuadraticExtensionVariable,
|
|
denominators []gl.QuadraticExtensionVariable,
|
|
challengeNum uint64,
|
|
openings types.OpeningSet,
|
|
) []gl.QuadraticExtensionVariable {
|
|
glApi := gl.NewGoldilocksApi(p.api)
|
|
numPartProds := p.commonData.NumPartialProducts
|
|
quotDegreeFactor := p.commonData.QuotientDegreeFactor
|
|
|
|
productAccs := make([]gl.QuadraticExtensionVariable, 0, numPartProds+2)
|
|
productAccs = append(productAccs, openings.PlonkZs[challengeNum])
|
|
productAccs = append(productAccs, openings.PartialProducts[challengeNum*numPartProds:(challengeNum+1)*numPartProds]...)
|
|
productAccs = append(productAccs, openings.PlonkZsNext[challengeNum])
|
|
|
|
partialProductChecks := make([]gl.QuadraticExtensionVariable, 0, numPartProds)
|
|
|
|
for i := uint64(0); i <= numPartProds; i += 1 {
|
|
ppStartIdx := i * quotDegreeFactor
|
|
numeProduct := numerators[ppStartIdx]
|
|
denoProduct := denominators[ppStartIdx]
|
|
for j := uint64(1); j < quotDegreeFactor; j++ {
|
|
numeProduct = glApi.MulExtension(numeProduct, numerators[ppStartIdx+j])
|
|
denoProduct = glApi.MulExtension(denoProduct, denominators[ppStartIdx+j])
|
|
}
|
|
|
|
partialProductCheck := glApi.SubExtension(
|
|
glApi.MulExtension(productAccs[i], numeProduct),
|
|
glApi.MulExtension(productAccs[i+1], denoProduct),
|
|
)
|
|
|
|
partialProductChecks = append(partialProductChecks, partialProductCheck)
|
|
}
|
|
return partialProductChecks
|
|
}
|
|
|
|
func (p *PlonkChip) evalVanishingPoly(
|
|
vars gates.EvaluationVars,
|
|
proofChallenges types.ProofChallenges,
|
|
openings types.OpeningSet,
|
|
zetaPowN gl.QuadraticExtensionVariable,
|
|
) []gl.QuadraticExtensionVariable {
|
|
glApi := gl.NewGoldilocksApi(p.api)
|
|
constraintTerms := p.evaluateGatesChip.EvaluateGateConstraints(vars)
|
|
|
|
// Calculate the k[i] * x
|
|
sIDs := make([]gl.QuadraticExtensionVariable, p.commonData.Config.NumRoutedWires)
|
|
|
|
for i := uint64(0); i < p.commonData.Config.NumRoutedWires; i++ {
|
|
sIDs[i] = glApi.ScalarMulExtension(proofChallenges.PlonkZeta, p.commonData.KIs[i])
|
|
}
|
|
|
|
// Calculate L_0(zeta)
|
|
l0Zeta := p.evalL0(proofChallenges.PlonkZeta, zetaPowN)
|
|
|
|
vanishingZ1Terms := make([]gl.QuadraticExtensionVariable, 0, p.commonData.Config.NumChallenges)
|
|
vanishingPartialProductsTerms := make([]gl.QuadraticExtensionVariable, 0, p.commonData.Config.NumChallenges*p.commonData.NumPartialProducts)
|
|
for i := uint64(0); i < p.commonData.Config.NumChallenges; i++ {
|
|
// L_0(zeta) (Z(zeta) - 1) = 0
|
|
z1_term := glApi.MulExtension(
|
|
l0Zeta,
|
|
glApi.SubExtension(openings.PlonkZs[i], gl.OneExtension()))
|
|
vanishingZ1Terms = append(vanishingZ1Terms, z1_term)
|
|
|
|
numeratorValues := make([]gl.QuadraticExtensionVariable, 0, p.commonData.Config.NumRoutedWires)
|
|
denominatorValues := make([]gl.QuadraticExtensionVariable, 0, p.commonData.Config.NumRoutedWires)
|
|
for j := uint64(0); j < p.commonData.Config.NumRoutedWires; j++ {
|
|
// The numerator is `beta * s_id + wire_value + gamma`, and the denominator is
|
|
// `beta * s_sigma + wire_value + gamma`.
|
|
wireValuePlusGamma := glApi.AddExtension(
|
|
openings.Wires[j],
|
|
gl.NewQuadraticExtensionVariable(proofChallenges.PlonkGammas[i], gl.Zero()),
|
|
)
|
|
|
|
numerator := glApi.AddExtension(
|
|
glApi.MulExtension(
|
|
gl.NewQuadraticExtensionVariable(proofChallenges.PlonkBetas[i], gl.Zero()),
|
|
sIDs[j],
|
|
),
|
|
wireValuePlusGamma,
|
|
)
|
|
|
|
denominator := glApi.AddExtension(
|
|
glApi.MulExtension(
|
|
gl.NewQuadraticExtensionVariable(proofChallenges.PlonkBetas[i], gl.Zero()),
|
|
openings.PlonkSigmas[j],
|
|
),
|
|
wireValuePlusGamma,
|
|
)
|
|
|
|
numeratorValues = append(numeratorValues, numerator)
|
|
denominatorValues = append(denominatorValues, denominator)
|
|
}
|
|
|
|
vanishingPartialProductsTerms = append(
|
|
vanishingPartialProductsTerms,
|
|
p.checkPartialProducts(numeratorValues, denominatorValues, i, openings)...,
|
|
)
|
|
}
|
|
|
|
vanishingTerms := append(vanishingZ1Terms, vanishingPartialProductsTerms...)
|
|
vanishingTerms = append(vanishingTerms, constraintTerms...)
|
|
|
|
reducedValues := make([]gl.QuadraticExtensionVariable, p.commonData.Config.NumChallenges)
|
|
for i := uint64(0); i < p.commonData.Config.NumChallenges; i++ {
|
|
reducedValues[i] = gl.ZeroExtension()
|
|
}
|
|
|
|
// reverse iterate the vanishingPartialProductsTerms array
|
|
for i := len(vanishingTerms) - 1; i >= 0; i-- {
|
|
for j := uint64(0); j < p.commonData.Config.NumChallenges; j++ {
|
|
reducedValues[j] = glApi.AddExtension(
|
|
vanishingTerms[i],
|
|
glApi.ScalarMulExtension(
|
|
reducedValues[j],
|
|
proofChallenges.PlonkAlphas[j],
|
|
),
|
|
)
|
|
}
|
|
}
|
|
|
|
return reducedValues
|
|
}
|
|
|
|
func (p *PlonkChip) Verify(
|
|
proofChallenges types.ProofChallenges,
|
|
openings types.OpeningSet,
|
|
publicInputsHash poseidon.GoldilocksHashOut,
|
|
) {
|
|
glApi := gl.NewGoldilocksApi(p.api)
|
|
|
|
// Calculate zeta^n
|
|
zetaPowN := p.expPowerOf2Extension(proofChallenges.PlonkZeta)
|
|
|
|
localConstants := openings.Constants
|
|
localWires := openings.Wires
|
|
vars := gates.NewEvaluationVars(
|
|
localConstants,
|
|
localWires,
|
|
publicInputsHash,
|
|
)
|
|
|
|
vanishingPolysZeta := p.evalVanishingPoly(*vars, proofChallenges, openings, zetaPowN)
|
|
|
|
// Calculate Z(H)
|
|
zHZeta := glApi.SubExtension(zetaPowN, gl.OneExtension())
|
|
|
|
// `quotient_polys_zeta` holds `num_challenges * quotient_degree_factor` evaluations.
|
|
// Each chunk of `quotient_degree_factor` holds the evaluations of `t_0(zeta),...,t_{quotient_degree_factor-1}(zeta)`
|
|
// where the "real" quotient polynomial is `t(X) = t_0(X) + t_1(X)*X^n + t_2(X)*X^{2n} + ...`.
|
|
// So to reconstruct `t(zeta)` we can compute `reduce_with_powers(chunk, zeta^n)` for each
|
|
// `quotient_degree_factor`-sized chunk of the original evaluations.
|
|
for i := 0; i < len(vanishingPolysZeta); i++ {
|
|
quotientPolysStartIdx := i * int(p.commonData.QuotientDegreeFactor)
|
|
quotientPolysEndIdx := quotientPolysStartIdx + int(p.commonData.QuotientDegreeFactor)
|
|
prod := glApi.MulExtension(
|
|
zHZeta,
|
|
glApi.ReduceWithPowers(
|
|
openings.QuotientPolys[quotientPolysStartIdx:quotientPolysEndIdx],
|
|
zetaPowN,
|
|
),
|
|
)
|
|
|
|
glApi.AssertIsEqualExtension(vanishingPolysZeta[i], prod)
|
|
}
|
|
}
|