|
package plonky2_verifier
|
|
|
|
import (
|
|
. "gnark-ed25519/field"
|
|
|
|
"github.com/consensys/gnark/frontend"
|
|
)
|
|
|
|
type PlonkChip struct {
|
|
api frontend.API
|
|
field frontend.API
|
|
qe *QuadraticExtensionAPI
|
|
|
|
commonData CommonCircuitData
|
|
proofChallenges ProofChallenges
|
|
openings OpeningSet
|
|
}
|
|
|
|
func (p *PlonkChip) expPowerOf2Extension(x QuadraticExtension) QuadraticExtension {
|
|
for i := uint64(0); i < p.commonData.DegreeBits; i++ {
|
|
x = p.qe.SquareExtension(x)
|
|
}
|
|
|
|
return x
|
|
}
|
|
|
|
func (p *PlonkChip) evalL0(x QuadraticExtension, xPowN QuadraticExtension) QuadraticExtension {
|
|
// L_0(x) = (x^n - 1) / (n * (x - 1))
|
|
eval_zero_poly := p.qe.SubExtension(
|
|
xPowN,
|
|
p.qe.ONE,
|
|
)
|
|
denominator := p.qe.SubExtension(
|
|
p.qe.ScalarMulExtension(x, p.qe.DEGREE_BITS_F),
|
|
p.qe.DEGREE_BITS_QE,
|
|
)
|
|
return p.qe.DivExtension(
|
|
eval_zero_poly,
|
|
denominator,
|
|
)
|
|
}
|
|
|
|
func (p *PlonkChip) checkPartialProducts(
|
|
numerators []QuadraticExtension,
|
|
denominators []QuadraticExtension,
|
|
challengeNum uint64) []QuadraticExtension {
|
|
|
|
numPartProds := p.commonData.NumPartialProducts
|
|
quotDegreeFactor := p.commonData.QuotientDegreeFactor
|
|
|
|
productAccs := make([]QuadraticExtension, numPartProds+2)
|
|
productAccs = append(productAccs, p.openings.PlonkZs[challengeNum])
|
|
productAccs = append(productAccs, p.openings.PartialProducts[challengeNum*numPartProds:(challengeNum+1)*numPartProds]...)
|
|
productAccs = append(productAccs, p.openings.PlonkZsNext[challengeNum])
|
|
|
|
partialProductChecks := make([]QuadraticExtension, numPartProds)
|
|
|
|
for i := uint64(0); i < numPartProds; i += 1 {
|
|
ppStartIdx := i * quotDegreeFactor
|
|
numeProduct := numerators[ppStartIdx]
|
|
denoProduct := denominators[ppStartIdx]
|
|
for j := uint64(1); j < quotDegreeFactor; j++ {
|
|
numeProduct = p.qe.MulExtension(numeProduct, numerators[ppStartIdx+j])
|
|
denoProduct = p.qe.MulExtension(denoProduct, denominators[ppStartIdx+j])
|
|
}
|
|
|
|
partialProductCheck := p.qe.SubExtension(
|
|
p.qe.MulExtension(productAccs[i], numeProduct),
|
|
p.qe.MulExtension(productAccs[i+1], denoProduct),
|
|
)
|
|
|
|
partialProductChecks = append(partialProductChecks, partialProductCheck)
|
|
}
|
|
|
|
return partialProductChecks
|
|
}
|
|
|
|
func (p *PlonkChip) evalVanishingPoly() []QuadraticExtension {
|
|
// Calculate the k[i] * x
|
|
s_ids := make([]QuadraticExtension, p.commonData.Config.NumRoutedWires)
|
|
|
|
for i := uint64(0); i < p.commonData.Config.NumRoutedWires; i++ {
|
|
p.qe.ScalarMulExtension(p.proofChallenges.PlonkZeta, p.commonData.KIs[i])
|
|
}
|
|
|
|
// Calculate zeta^n
|
|
zeta_pow_n := p.expPowerOf2Extension(p.proofChallenges.PlonkZeta)
|
|
|
|
// Calculate L_0(zeta)
|
|
l_0_zeta := p.evalL0(p.proofChallenges.PlonkZeta, zeta_pow_n)
|
|
|
|
vanishing_z1_terms := make([]QuadraticExtension, p.commonData.Config.NumChallenges)
|
|
vanishing_partial_products_terms := make([]QuadraticExtension, p.commonData.Config.NumChallenges*p.commonData.NumPartialProducts)
|
|
numerator_values := make([]QuadraticExtension, p.commonData.Config.NumChallenges*p.commonData.Config.NumRoutedWires)
|
|
denominator_values := make([]QuadraticExtension, p.commonData.Config.NumChallenges*p.commonData.Config.NumRoutedWires)
|
|
for i := uint64(0); i < p.commonData.Config.NumChallenges; i++ {
|
|
// L_0(zeta) (Z(zeta) - 1) = 0
|
|
z1_term := p.qe.SubExtension(
|
|
p.qe.MulExtension(l_0_zeta, p.openings.PlonkZs[i]),
|
|
l_0_zeta,
|
|
)
|
|
vanishing_z1_terms = append(vanishing_z1_terms, z1_term)
|
|
|
|
for j := uint64(0); j < p.commonData.Config.NumRoutedWires; j++ {
|
|
// The numerator is `beta * s_id + wire_value + gamma`, and the denominator is
|
|
// `beta * s_sigma + wire_value + gamma`.
|
|
wire_value_plus_gamma := p.qe.AddExtension(p.openings.Wires[j], p.proofChallenges.FriChallenges.FriBetas[i])
|
|
numerator := p.qe.AddExtension(
|
|
p.qe.MulExtension(
|
|
p.proofChallenges.FriChallenges.FriBetas[i],
|
|
s_ids[j],
|
|
),
|
|
wire_value_plus_gamma,
|
|
)
|
|
|
|
denominator := p.qe.AddExtension(
|
|
p.qe.MulExtension(
|
|
p.proofChallenges.FriChallenges.FriBetas[i],
|
|
p.openings.PlonkSigmas[j],
|
|
),
|
|
wire_value_plus_gamma,
|
|
)
|
|
|
|
numerator_values = append(numerator_values, numerator)
|
|
denominator_values = append(denominator_values, denominator)
|
|
}
|
|
|
|
vanishing_partial_products_terms = append(
|
|
vanishing_partial_products_terms,
|
|
p.checkPartialProducts(numerator_values, denominator_values, i)...,
|
|
)
|
|
}
|
|
|
|
return vanishing_partial_products_terms
|
|
}
|
|
|
|
func (p *PlonkChip) Verify() {
|
|
p.evalVanishingPoly()
|
|
}
|