You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

238 lines
7.6 KiB

package plonky2_verifier
import (
"fmt"
"gnark-ed25519/field"
. "gnark-ed25519/field"
"gnark-ed25519/poseidon"
"math"
"github.com/consensys/gnark/frontend"
)
type FriOpeningBatch struct {
values []QuadraticExtension
}
type FriOpenings struct {
Batches []FriOpeningBatch
}
func (c *OpeningSet) ToFriOpenings() FriOpenings {
values := c.Constants
values = append(values, c.PlonkSigmas...)
values = append(values, c.Wires...)
values = append(values, c.PlonkZs...)
values = append(values, c.PartialProducts...)
values = append(values, c.QuotientPolys...)
zetaBatch := FriOpeningBatch{values: values}
zetaNextBatch := FriOpeningBatch{values: c.PlonkZsNext}
return FriOpenings{Batches: []FriOpeningBatch{zetaBatch, zetaNextBatch}}
}
type FriChip struct {
api frontend.API
field frontend.API
qe *QuadraticExtensionAPI
poseidonChip *poseidon.PoseidonChip
friParams *FriParams
verifierOnlyCircuitData *VerifierOnlyCircuitData
}
func NewFriChip(api frontend.API, field frontend.API, qe *QuadraticExtensionAPI, poseidonChip *poseidon.PoseidonChip, friParams *FriParams) *FriChip {
return &FriChip{
api: api,
field: field,
qe: qe,
poseidonChip: poseidonChip,
friParams: friParams,
}
}
func (f *FriChip) assertLeadingZeros(powWitness F, friConfig FriConfig) {
// Asserts that powWitness'es big-endian bit representation has at least `leading_zeros` leading zeros.
// Note that this is assuming that the Goldilocks field is being used. Specfically that the
// field is 64 bits long
maxPowWitness := uint64(math.Pow(2, float64(64-friConfig.ProofOfWorkBits))) - 1
f.field.AssertIsLessOrEqual(powWitness, field.NewFieldElement(maxPowWitness))
}
func (f *FriChip) fromOpeningsAndAlpha(openings *FriOpenings, alpha QuadraticExtension) []QuadraticExtension {
// One reduced opening for all openings evaluated at point Zeta.
// Another one for all openings evaluated at point Zeta * Omega (which is only PlonkZsNext polynomial)
reducedOpenings := make([]QuadraticExtension, 0, 2)
for _, batch := range openings.Batches {
reducedOpenings = append(reducedOpenings, reduceWithPowers(f.qe, batch.values, alpha))
}
return reducedOpenings
}
func (f *FriChip) hashOrNoop(data []F) Hash {
var elements Hash
if len(data) <= 4 {
// Pad the data to have a size of 4
for i, inputElement := range data {
elements[i] = inputElement
}
for i := len(data); i < 4; i++ {
elements[i] = f.qe.ZERO_F
}
return elements
} else {
hashOutput := f.poseidonChip.HashNToMNoPad(data, 4)
if len(hashOutput) != len(elements) {
panic("The length of hashOutput and elements is different")
}
for i, hashField := range hashOutput {
elements[i] = hashField
}
return elements
}
}
func (f *FriChip) verifyMerkleProofToCapWithCapIndex(leafData []F, leafIndexBits []frontend.Variable, capIndex F, merkleCap MerkleCap, proof *MerkleProof) {
currentDigest := f.hashOrNoop(leafData)
fourZeros := [4]F{f.qe.ZERO_F, f.qe.ZERO_F, f.qe.ZERO_F, f.qe.ZERO_F}
field.PrintHash(f.field, currentDigest)
for i, sibling := range proof.Siblings {
bit := leafIndexBits[i]
var leftSiblingState poseidon.PoseidonState
copy(leftSiblingState[0:4], sibling[0:4])
copy(leftSiblingState[4:8], currentDigest[0:4])
copy(leftSiblingState[8:12], fourZeros[0:4])
leftHash := f.poseidonChip.Poseidon(leftSiblingState)
var leftHashCompress Hash
leftHashCompress[0] = leftHash[0]
leftHashCompress[1] = leftHash[1]
leftHashCompress[2] = leftHash[2]
leftHashCompress[3] = leftHash[3]
var rightSiblingState poseidon.PoseidonState
copy(rightSiblingState[0:4], currentDigest[0:4])
copy(rightSiblingState[4:8], sibling[0:4])
copy(rightSiblingState[8:12], fourZeros[0:4])
rightHash := f.poseidonChip.Poseidon(rightSiblingState)
var rightHashCompress Hash
rightHashCompress[0] = rightHash[0]
rightHashCompress[1] = rightHash[1]
rightHashCompress[2] = rightHash[2]
rightHashCompress[3] = rightHash[3]
currentDigest = SelectHash(f.field, bit, leftHashCompress, rightHashCompress)
field.PrintHash(f.field, currentDigest)
}
}
func (f *FriChip) verifyInitialProof(xIndexBits []frontend.Variable, proof *FriInitialTreeProof, initialMerkleCaps []MerkleCap, capIndex F) {
if len(proof.EvalsProofs) != len(initialMerkleCaps) {
panic("length of eval proofs in fri proof should equal length of initial merkle caps")
}
for i := 0; i < len(initialMerkleCaps); i++ {
evals := proof.EvalsProofs[i].Elements
merkleProof := proof.EvalsProofs[i].MerkleProof
cap := initialMerkleCaps[i]
f.verifyMerkleProofToCapWithCapIndex(evals, xIndexBits, capIndex, cap, &merkleProof)
}
}
// / We decompose FRI query indices into bits without verifying that the decomposition given by
// / the prover is the canonical one. In particular, if `x_index < 2^field_bits - p`, then the
// / prover could supply the binary encoding of either `x_index` or `x_index + p`, since they are
// / congruent mod `p`. However, this only occurs with probability
// / p_ambiguous = (2^field_bits - p) / p
// / which is small for the field that we use in practice.
// /
// / In particular, the soundness error of one FRI query is roughly the codeword rate, which
// / is much larger than this ambiguous-element probability given any reasonable parameters.
// / Thus ambiguous elements contribute a negligible amount to soundness error.
// /
// / Here we compare the probabilities as a sanity check, to verify the claim above.
func (f *FriChip) assertNoncanonicalIndicesOK() {
numAmbiguousElems := uint64(math.MaxUint64) - EmulatedFieldModulus().Uint64() + 1
queryError := f.friParams.Config.rate()
pAmbiguous := float64(numAmbiguousElems) / float64(EmulatedFieldModulus().Uint64())
// TODO: Check that pAmbiguous value is the same as the one in plonky2 verifier
if pAmbiguous >= queryError*1e-5 {
panic("A non-negligible portion of field elements are in the range that permits non-canonical encodings. Need to do more analysis or enforce canonical encodings.")
}
}
func (f *FriChip) verifyQueryRound(
challenges *FriChallenges,
precomputedReducedEval []QuadraticExtension,
initialMerkleCaps []MerkleCap,
proof *FriProof,
xIndex F,
n uint64,
nLog uint64,
roundProof *FriQueryRound,
) {
f.assertNoncanonicalIndicesOK()
xIndexBits := f.qe.field.ToBinary(xIndex, int(nLog))
capIndex := f.qe.field.FromBinary(xIndexBits[len(xIndexBits)-int(f.friParams.Config.CapHeight):]...).(F)
f.verifyInitialProof(xIndexBits, &roundProof.InitialTreesProof, initialMerkleCaps, capIndex)
}
func (f *FriChip) VerifyFriProof(
openings FriOpenings,
friChallenges *FriChallenges,
initialMerkleCaps []MerkleCap,
friProof *FriProof,
) {
// TODO: Check fri config
/* if let Some(max_arity_bits) = params.max_arity_bits() {
self.check_recursion_config::<C>(max_arity_bits);
}
debug_assert_eq!(
params.final_poly_len(),
proof.final_poly.len(),
"Final polynomial has wrong degree."
); */
// Check POW
f.assertLeadingZeros(friChallenges.FriPowResponse, f.friParams.Config)
precomputedReducedEvals := f.fromOpeningsAndAlpha(&openings, friChallenges.FriAlpha)
// Size of the LDE domain.
nLog := f.friParams.DegreeBits + f.friParams.Config.RateBits
n := uint64(math.Pow(2, float64(nLog)))
if len(friChallenges.FriQueryIndicies) != len(friProof.QueryRoundProofs) {
panic(fmt.Sprintf(
"Number of query indices (%d) should equal number of query round proofs (%d)",
len(friChallenges.FriQueryIndicies),
len(friProof.QueryRoundProofs),
))
}
for idx, xIndex := range friChallenges.FriQueryIndicies {
roundProof := friProof.QueryRoundProofs[idx]
f.verifyQueryRound(
friChallenges,
precomputedReducedEvals,
initialMerkleCaps,
friProof,
xIndex,
n,
nLog,
&roundProof,
)
}
}