You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

228 lines
6.0 KiB

package fri
import (
"math"
"github.com/consensys/gnark-crypto/field/goldilocks"
"github.com/succinctlabs/gnark-plonky2-verifier/types"
"github.com/succinctlabs/gnark-plonky2-verifier/variables"
)
type PolynomialInfo struct {
OracleIndex uint64
PolynomialInfo uint64
}
type OracleInfo struct {
NumPolys uint64
Blinding bool
}
type PlonkOracle struct {
index uint64
blinding bool
}
var CONSTANTS_SIGMAS = PlonkOracle{
index: 0,
blinding: false,
}
var WIRES = PlonkOracle{
index: 1,
blinding: true,
}
var ZS_PARTIAL_PRODUCTS = PlonkOracle{
index: 2,
blinding: true,
}
var QUOTIENT = PlonkOracle{
index: 3,
blinding: true,
}
func polynomialInfoFromRange(c *types.CommonCircuitData, oracleIdx uint64, startPolyIdx uint64, endPolyIdx uint64) []PolynomialInfo {
returnArr := make([]PolynomialInfo, 0)
for i := startPolyIdx; i < endPolyIdx; i++ {
returnArr = append(returnArr,
PolynomialInfo{
OracleIndex: oracleIdx,
PolynomialInfo: i,
})
}
return returnArr
}
// Range of the sigma polynomials in the `constants_sigmas_commitment`.
func sigmasRange(c *types.CommonCircuitData) []uint64 {
returnArr := make([]uint64, 0)
for i := c.NumConstants; i <= c.NumConstants+c.Config.NumRoutedWires; i++ {
returnArr = append(returnArr, i)
}
return returnArr
}
func numPreprocessedPolys(c *types.CommonCircuitData) uint64 {
sigmasRange := sigmasRange(c)
return sigmasRange[len(sigmasRange)-1]
}
func numZSPartialProductsPolys(c *types.CommonCircuitData) uint64 {
return c.Config.NumChallenges * (1 + c.NumPartialProducts)
}
func numQuotientPolys(c *types.CommonCircuitData) uint64 {
return c.Config.NumChallenges * c.QuotientDegreeFactor
}
func friPreprocessedPolys(c *types.CommonCircuitData) []PolynomialInfo {
return polynomialInfoFromRange(
c,
CONSTANTS_SIGMAS.index,
0,
numPreprocessedPolys(c),
)
}
func friWirePolys(c *types.CommonCircuitData) []PolynomialInfo {
numWirePolys := c.Config.NumWires
return polynomialInfoFromRange(c, WIRES.index, 0, numWirePolys)
}
func friZSPartialProductsPolys(c *types.CommonCircuitData) []PolynomialInfo {
return polynomialInfoFromRange(
c,
ZS_PARTIAL_PRODUCTS.index,
0,
numZSPartialProductsPolys(c),
)
}
func friQuotientPolys(c *types.CommonCircuitData) []PolynomialInfo {
return polynomialInfoFromRange(
c,
QUOTIENT.index,
0,
numQuotientPolys(c),
)
}
func friZSPolys(c *types.CommonCircuitData) []PolynomialInfo {
return polynomialInfoFromRange(
c,
ZS_PARTIAL_PRODUCTS.index,
0,
c.Config.NumChallenges,
)
}
func friOracles(c *types.CommonCircuitData) []OracleInfo {
return []OracleInfo{
{
NumPolys: numPreprocessedPolys(c),
Blinding: CONSTANTS_SIGMAS.blinding,
},
{
NumPolys: c.Config.NumWires,
Blinding: WIRES.blinding,
},
{
NumPolys: numZSPartialProductsPolys(c),
Blinding: ZS_PARTIAL_PRODUCTS.blinding,
},
{
NumPolys: numQuotientPolys(c),
Blinding: QUOTIENT.blinding,
},
}
}
func friAllPolys(c *types.CommonCircuitData) []PolynomialInfo {
returnArr := make([]PolynomialInfo, 0)
returnArr = append(returnArr, friPreprocessedPolys(c)...)
returnArr = append(returnArr, friWirePolys(c)...)
returnArr = append(returnArr, friZSPartialProductsPolys(c)...)
returnArr = append(returnArr, friQuotientPolys(c)...)
return returnArr
}
// This does not add any constraints, it's just a sanity check on the friParams
// It's a 1-1 port of assert_noncanonical_indices_ok from fri::recursive_verifier in plonky2
func assertNoncanonicalIndicesOK(friParams types.FriParams) {
numAmbiguousElems := uint64(math.MaxUint64) - goldilocks.Modulus().Uint64() + 1
queryError := friParams.Config.Rate()
pAmbiguous := float64(numAmbiguousElems) / float64(goldilocks.Modulus().Uint64())
if pAmbiguous >= queryError*1e-5 {
panic("A non-negligible portion of field elements are in the range that permits non-canonical encodings. Need to do more analysis or enforce canonical encodings.")
}
}
// This does not add any constraints, it is just a sanity check on the shapes of the proof variable
// and given FriParams. It's a 1-1 port of validate_fri_proof_shape from fri::validate_shape in plonky2
func validateFriProofShape(proof *variables.FriProof, instance InstanceInfo, params *types.FriParams) {
const SALT_SIZE = 4
commitPhaseMerkleCaps := proof.CommitPhaseMerkleCaps
queryRoundProofs := proof.QueryRoundProofs
finalPoly := proof.FinalPoly
capHeight := params.Config.CapHeight
for _, cap := range commitPhaseMerkleCaps {
if 1<<capHeight != len(cap) {
panic("config cap_height does not match commit_phase_merkle_caps")
}
}
for _, queryRound := range queryRoundProofs {
initialTreesProof := queryRound.InitialTreesProof
steps := queryRound.Steps
if len(initialTreesProof.EvalsProofs) != len(instance.Oracles) {
panic("eval proofs length is not equal to instance oracles length")
}
for i, evalProof := range initialTreesProof.EvalsProofs {
leaf := evalProof.Elements
merkleProof := evalProof.MerkleProof
oracle := instance.Oracles[i]
salt_size := 0
if oracle.Blinding && params.Hiding {
salt_size = SALT_SIZE
}
if len(leaf) != (int(oracle.NumPolys) + salt_size) {
panic("eval proof leaf length doesn't match oracle info")
}
if len(merkleProof.Siblings)+int(capHeight) != params.LdeBits() {
panic("length of merkle proof + capHeight doesn't match lde_bits from params")
}
}
if len(steps) != len(params.ReductionArityBits) {
panic("length of steps != params.reduction_arity_bits")
}
codewordLenBits := params.LdeBits()
for i, step := range steps {
evals := step.Evals
merkleProof := step.MerkleProof
arityBits := params.ReductionArityBits[i]
arity := 1 << arityBits
codewordLenBits -= int(arityBits)
if len(evals) != arity {
panic("len evals doesn't match arity")
}
if len(merkleProof.Siblings)+int(capHeight) != codewordLenBits {
panic("len merkleProof doesn't match codewordLenBits")
}
}
}
if len(finalPoly.Coeffs) != params.FinalPolyLen() {
panic("len finalPoly doesn't match params FinalPolyLen")
}
}