|
package plonky2_verifier
|
|
|
|
import (
|
|
"fmt"
|
|
. "gnark-plonky2-verifier/field"
|
|
"regexp"
|
|
"strconv"
|
|
)
|
|
|
|
var exponentiationGateRegex = regexp.MustCompile("ExponentiationGate { num_power_bits: (?P<numPowerBits>[0-9]+), _phantom: PhantomData<plonky2_field::goldilocks_field::GoldilocksField> }<D=(?P<base>[0-9]+)>")
|
|
|
|
func deserializeExponentiationGate(parameters map[string]string) gate {
|
|
// Has the format "ExponentiationGate { num_power_bits: 67, _phantom: PhantomData<plonky2_field::goldilocks_field::GoldilocksField> }<D=2>"
|
|
numPowerBits, hasNumPowerBits := parameters["numPowerBits"]
|
|
if !hasNumPowerBits {
|
|
panic("Missing field num_power_bits in ExponentiationGate")
|
|
}
|
|
|
|
numPowerBitsInt, err := strconv.Atoi(numPowerBits)
|
|
if err != nil {
|
|
panic("Invalid num_power_bits field in ExponentiationGate")
|
|
}
|
|
|
|
return NewExponentiationGate(uint64(numPowerBitsInt))
|
|
}
|
|
|
|
type ExponentiationGate struct {
|
|
numPowerBits uint64
|
|
}
|
|
|
|
func NewExponentiationGate(numPowerBits uint64) *ExponentiationGate {
|
|
return &ExponentiationGate{
|
|
numPowerBits: numPowerBits,
|
|
}
|
|
}
|
|
|
|
func (g *ExponentiationGate) Id() string {
|
|
return fmt.Sprintf("ExponentiationGate { num_power_bits: %d }", g.numPowerBits)
|
|
}
|
|
|
|
func (g *ExponentiationGate) wireBase() uint64 {
|
|
return 0
|
|
}
|
|
|
|
// / The `i`th bit of the exponent, in little-endian order.
|
|
func (g *ExponentiationGate) wirePowerBit(i uint64) uint64 {
|
|
if i >= g.numPowerBits {
|
|
panic("Invalid power bit index")
|
|
}
|
|
return 1 + i
|
|
}
|
|
|
|
func (g *ExponentiationGate) wireOutput() uint64 {
|
|
return 1 + g.numPowerBits
|
|
}
|
|
|
|
func (g *ExponentiationGate) wireIntermediateValue(i uint64) uint64 {
|
|
if i >= g.numPowerBits {
|
|
panic("Invalid intermediate value index")
|
|
}
|
|
return 2 + g.numPowerBits + i
|
|
}
|
|
|
|
func (g *ExponentiationGate) EvalUnfiltered(p *PlonkChip, vars EvaluationVars) []QuadraticExtension {
|
|
base := vars.localWires[g.wireBase()]
|
|
|
|
var powerBits []QuadraticExtension
|
|
for i := uint64(0); i < g.numPowerBits; i++ {
|
|
powerBits = append(powerBits, vars.localWires[g.wirePowerBit(i)])
|
|
}
|
|
|
|
var intermediateValues []QuadraticExtension
|
|
for i := uint64(0); i < g.numPowerBits; i++ {
|
|
intermediateValues = append(intermediateValues, vars.localWires[g.wireIntermediateValue(i)])
|
|
}
|
|
|
|
output := vars.localWires[g.wireOutput()]
|
|
|
|
var constraints []QuadraticExtension
|
|
|
|
for i := uint64(0); i < g.numPowerBits; i++ {
|
|
var prevIntermediateValue QuadraticExtension
|
|
if i == 0 {
|
|
prevIntermediateValue = p.qeAPI.ONE_QE
|
|
} else {
|
|
prevIntermediateValue = p.qeAPI.SquareExtension(intermediateValues[i-1])
|
|
}
|
|
|
|
// powerBits is in LE order, but we accumulate in BE order.
|
|
curBit := powerBits[g.numPowerBits-i-1]
|
|
|
|
// Do a polynomial representation of generaized select (where the selector variable doesn't have to be binary)
|
|
// if b { x } else { y }
|
|
// i.e. `bx - (by-y)`.
|
|
tmp := p.qeAPI.MulExtension(curBit, p.qeAPI.ONE_QE)
|
|
tmp = p.qeAPI.SubExtension(tmp, p.qeAPI.ONE_QE)
|
|
mulBy := p.qeAPI.MulExtension(curBit, base)
|
|
mulBy = p.qeAPI.SubExtension(mulBy, tmp)
|
|
intermediateValueDiff := p.qeAPI.MulExtension(prevIntermediateValue, mulBy)
|
|
intermediateValueDiff = p.qeAPI.SubExtension(intermediateValueDiff, intermediateValues[i])
|
|
constraints = append(constraints, intermediateValueDiff)
|
|
}
|
|
|
|
outputDiff := p.qeAPI.SubExtension(output, intermediateValues[g.numPowerBits-1])
|
|
constraints = append(constraints, outputDiff)
|
|
|
|
return constraints
|
|
}
|