You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

225 lines
7.6 KiB

package plonk
import (
"github.com/consensys/gnark/frontend"
"github.com/succinctlabs/gnark-plonky2-verifier/field"
"github.com/succinctlabs/gnark-plonky2-verifier/poseidon"
"github.com/succinctlabs/gnark-plonky2-verifier/verifier/common"
"github.com/succinctlabs/gnark-plonky2-verifier/verifier/internal/gates"
)
type PlonkChip struct {
api frontend.API `gnark:"-"`
qeAPI *field.QuadraticExtensionAPI `gnark:"-"`
commonData common.CommonCircuitData `gnark:"-"`
DEGREE field.F `gnark:"-"`
DEGREE_BITS_F field.F `gnark:"-"`
DEGREE_QE field.QuadraticExtension `gnark:"-"`
evaluateGatesChip *gates.EvaluateGatesChip
}
func NewPlonkChip(api frontend.API, qeAPI *field.QuadraticExtensionAPI, commonData common.CommonCircuitData) *PlonkChip {
// TODO: Should degreeBits be verified that it fits within the field and that degree is within uint64?
evaluateGatesChip := gates.NewEvaluateGatesChip(
api,
qeAPI,
commonData.Gates,
commonData.NumGateConstraints,
commonData.SelectorsInfo,
)
return &PlonkChip{
api: api,
qeAPI: qeAPI,
commonData: commonData,
DEGREE: field.NewFieldConst(1 << commonData.DegreeBits),
DEGREE_BITS_F: field.NewFieldConst(commonData.DegreeBits),
DEGREE_QE: field.QuadraticExtension{field.NewFieldConst(1 << commonData.DegreeBits), field.ZERO_F},
evaluateGatesChip: evaluateGatesChip,
}
}
func (p *PlonkChip) expPowerOf2Extension(x field.QuadraticExtension) field.QuadraticExtension {
for i := uint64(0); i < p.commonData.DegreeBits; i++ {
x = p.qeAPI.SquareExtension(x)
}
return x
}
func (p *PlonkChip) evalL0(x field.QuadraticExtension, xPowN field.QuadraticExtension) field.QuadraticExtension {
// L_0(x) = (x^n - 1) / (n * (x - 1))
evalZeroPoly := p.qeAPI.SubExtension(
xPowN,
p.qeAPI.ONE_QE,
)
denominator := p.qeAPI.SubExtension(
p.qeAPI.ScalarMulExtension(x, p.DEGREE),
p.DEGREE_QE,
)
return p.qeAPI.DivExtension(
evalZeroPoly,
denominator,
)
}
func (p *PlonkChip) checkPartialProducts(
numerators []field.QuadraticExtension,
denominators []field.QuadraticExtension,
challengeNum uint64,
openings common.OpeningSet,
) []field.QuadraticExtension {
numPartProds := p.commonData.NumPartialProducts
quotDegreeFactor := p.commonData.QuotientDegreeFactor
productAccs := make([]field.QuadraticExtension, 0, numPartProds+2)
productAccs = append(productAccs, openings.PlonkZs[challengeNum])
productAccs = append(productAccs, openings.PartialProducts[challengeNum*numPartProds:(challengeNum+1)*numPartProds]...)
productAccs = append(productAccs, openings.PlonkZsNext[challengeNum])
partialProductChecks := make([]field.QuadraticExtension, 0, numPartProds)
for i := uint64(0); i <= numPartProds; i += 1 {
ppStartIdx := i * quotDegreeFactor
numeProduct := numerators[ppStartIdx]
denoProduct := denominators[ppStartIdx]
for j := uint64(1); j < quotDegreeFactor; j++ {
numeProduct = p.qeAPI.MulExtension(numeProduct, numerators[ppStartIdx+j])
denoProduct = p.qeAPI.MulExtension(denoProduct, denominators[ppStartIdx+j])
}
partialProductCheck := p.qeAPI.SubExtension(
p.qeAPI.MulExtension(productAccs[i], numeProduct),
p.qeAPI.MulExtension(productAccs[i+1], denoProduct),
)
partialProductChecks = append(partialProductChecks, partialProductCheck)
}
return partialProductChecks
}
func (p *PlonkChip) evalVanishingPoly(vars gates.EvaluationVars, proofChallenges common.ProofChallenges, openings common.OpeningSet, zetaPowN field.QuadraticExtension) []field.QuadraticExtension {
constraintTerms := p.evaluateGatesChip.EvaluateGateConstraints(vars)
// Calculate the k[i] * x
sIDs := make([]field.QuadraticExtension, p.commonData.Config.NumRoutedWires)
for i := uint64(0); i < p.commonData.Config.NumRoutedWires; i++ {
sIDs[i] = p.qeAPI.ScalarMulExtension(proofChallenges.PlonkZeta, p.commonData.KIs[i])
}
// Calculate L_0(zeta)
l0Zeta := p.evalL0(proofChallenges.PlonkZeta, zetaPowN)
vanishingZ1Terms := make([]field.QuadraticExtension, 0, p.commonData.Config.NumChallenges)
vanishingPartialProductsTerms := make([]field.QuadraticExtension, 0, p.commonData.Config.NumChallenges*p.commonData.NumPartialProducts)
for i := uint64(0); i < p.commonData.Config.NumChallenges; i++ {
// L_0(zeta) (Z(zeta) - 1) = 0
z1_term := p.qeAPI.MulExtension(
l0Zeta,
p.qeAPI.SubExtension(openings.PlonkZs[i], p.qeAPI.ONE_QE))
vanishingZ1Terms = append(vanishingZ1Terms, z1_term)
numeratorValues := make([]field.QuadraticExtension, 0, p.commonData.Config.NumRoutedWires)
denominatorValues := make([]field.QuadraticExtension, 0, p.commonData.Config.NumRoutedWires)
for j := uint64(0); j < p.commonData.Config.NumRoutedWires; j++ {
// The numerator is `beta * s_id + wire_value + gamma`, and the denominator is
// `beta * s_sigma + wire_value + gamma`.
wireValuePlusGamma := p.qeAPI.AddExtension(
openings.Wires[j],
p.qeAPI.FieldToQE(proofChallenges.PlonkGammas[i]),
)
numerator := p.qeAPI.AddExtension(
p.qeAPI.MulExtension(
p.qeAPI.FieldToQE(proofChallenges.PlonkBetas[i]),
sIDs[j],
),
wireValuePlusGamma,
)
denominator := p.qeAPI.AddExtension(
p.qeAPI.MulExtension(
p.qeAPI.FieldToQE(proofChallenges.PlonkBetas[i]),
openings.PlonkSigmas[j],
),
wireValuePlusGamma,
)
numeratorValues = append(numeratorValues, numerator)
denominatorValues = append(denominatorValues, denominator)
}
vanishingPartialProductsTerms = append(
vanishingPartialProductsTerms,
p.checkPartialProducts(numeratorValues, denominatorValues, i, openings)...,
)
}
vanishingTerms := append(vanishingZ1Terms, vanishingPartialProductsTerms...)
vanishingTerms = append(vanishingTerms, constraintTerms...)
reducedValues := make([]field.QuadraticExtension, p.commonData.Config.NumChallenges)
for i := uint64(0); i < p.commonData.Config.NumChallenges; i++ {
reducedValues[i] = p.qeAPI.ZERO_QE
}
// reverse iterate the vanishingPartialProductsTerms array
for i := len(vanishingTerms) - 1; i >= 0; i-- {
for j := uint64(0); j < p.commonData.Config.NumChallenges; j++ {
reducedValues[j] = p.qeAPI.AddExtension(
vanishingTerms[i],
p.qeAPI.ScalarMulExtension(
reducedValues[j],
proofChallenges.PlonkAlphas[j],
),
)
}
}
return reducedValues
}
func (p *PlonkChip) Verify(proofChallenges common.ProofChallenges, openings common.OpeningSet, publicInputsHash poseidon.PoseidonHashOut) {
// Calculate zeta^n
zetaPowN := p.expPowerOf2Extension(proofChallenges.PlonkZeta)
localConstants := openings.Constants
localWires := openings.Wires
vars := gates.NewEvaluationVars(
localConstants,
localWires,
publicInputsHash,
)
vanishingPolysZeta := p.evalVanishingPoly(*vars, proofChallenges, openings, zetaPowN)
// Calculate Z(H)
zHZeta := p.qeAPI.SubExtension(zetaPowN, p.qeAPI.ONE_QE)
// `quotient_polys_zeta` holds `num_challenges * quotient_degree_factor` evaluations.
// Each chunk of `quotient_degree_factor` holds the evaluations of `t_0(zeta),...,t_{quotient_degree_factor-1}(zeta)`
// where the "real" quotient polynomial is `t(X) = t_0(X) + t_1(X)*X^n + t_2(X)*X^{2n} + ...`.
// So to reconstruct `t(zeta)` we can compute `reduce_with_powers(chunk, zeta^n)` for each
// `quotient_degree_factor`-sized chunk of the original evaluations.
for i := 0; i < len(vanishingPolysZeta); i++ {
quotientPolysStartIdx := i * int(p.commonData.QuotientDegreeFactor)
quotientPolysEndIdx := quotientPolysStartIdx + int(p.commonData.QuotientDegreeFactor)
prod := p.qeAPI.MulExtension(
zHZeta,
p.qeAPI.ReduceWithPowers(
openings.QuotientPolys[quotientPolysStartIdx:quotientPolysEndIdx],
zetaPowN,
),
)
p.qeAPI.AssertIsEqual(vanishingPolysZeta[i], prod)
}
}