package field
|
|
|
|
import (
|
|
"fmt"
|
|
"math/bits"
|
|
|
|
"github.com/consensys/gnark/frontend"
|
|
)
|
|
|
|
type QuadraticExtensionAPI struct {
|
|
fieldAPI frontend.API
|
|
|
|
W F
|
|
DTH_ROOT F
|
|
|
|
ONE_QE QuadraticExtension
|
|
ZERO_QE QuadraticExtension
|
|
}
|
|
|
|
func NewQuadraticExtensionAPI(fieldAPI frontend.API, degreeBits uint64) *QuadraticExtensionAPI {
|
|
// TODO: Should degreeBits be verified that it fits within the field and that degree is within uint64?
|
|
|
|
return &QuadraticExtensionAPI{
|
|
fieldAPI: fieldAPI,
|
|
|
|
W: NewFieldElement(7),
|
|
DTH_ROOT: NewFieldElement(18446744069414584320),
|
|
|
|
ONE_QE: QuadraticExtension{ONE_F, ZERO_F},
|
|
ZERO_QE: QuadraticExtension{ZERO_F, ZERO_F},
|
|
}
|
|
}
|
|
|
|
func (c *QuadraticExtensionAPI) SquareExtension(a QuadraticExtension) QuadraticExtension {
|
|
return c.MulExtension(a, a)
|
|
}
|
|
|
|
func (c *QuadraticExtensionAPI) MulExtension(a QuadraticExtension, b QuadraticExtension) QuadraticExtension {
|
|
c_0 := c.fieldAPI.Add(c.fieldAPI.Mul(a[0], b[0]).(F), c.fieldAPI.Mul(c.W, a[1], b[1])).(F)
|
|
c_1 := c.fieldAPI.Add(c.fieldAPI.Mul(a[0], b[1]).(F), c.fieldAPI.Mul(a[1], b[0])).(F)
|
|
return QuadraticExtension{c_0, c_1}
|
|
}
|
|
|
|
func (c *QuadraticExtensionAPI) AddExtension(a QuadraticExtension, b QuadraticExtension) QuadraticExtension {
|
|
c_0 := c.fieldAPI.Add(a[0], b[0]).(F)
|
|
c_1 := c.fieldAPI.Add(a[1], b[1]).(F)
|
|
return QuadraticExtension{c_0, c_1}
|
|
}
|
|
|
|
func (c *QuadraticExtensionAPI) SubExtension(a QuadraticExtension, b QuadraticExtension) QuadraticExtension {
|
|
c_0 := c.fieldAPI.Sub(a[0], b[0]).(F)
|
|
c_1 := c.fieldAPI.Sub(a[1], b[1]).(F)
|
|
return QuadraticExtension{c_0, c_1}
|
|
}
|
|
|
|
func (c *QuadraticExtensionAPI) DivExtension(a QuadraticExtension, b QuadraticExtension) QuadraticExtension {
|
|
return c.MulExtension(a, c.InverseExtension(b))
|
|
}
|
|
|
|
func (c *QuadraticExtensionAPI) IsZero(a QuadraticExtension) frontend.Variable {
|
|
return c.fieldAPI.Mul(c.fieldAPI.IsZero(a[0]), c.fieldAPI.IsZero(a[1]))
|
|
}
|
|
|
|
// TODO: Instead of calculating the inverse within the circuit, can witness the
|
|
// inverse and assert that a_inverse * a = 1. Should reduce # of constraints.
|
|
func (c *QuadraticExtensionAPI) InverseExtension(a QuadraticExtension) QuadraticExtension {
|
|
// First assert that a doesn't have 0 value coefficients
|
|
a0_is_zero := c.fieldAPI.IsZero(a[0])
|
|
a1_is_zero := c.fieldAPI.IsZero(a[1])
|
|
|
|
// assert that a0_is_zero OR a1_is_zero == false
|
|
c.fieldAPI.AssertIsEqual(c.fieldAPI.Mul(a0_is_zero, a1_is_zero).(F), ZERO_F)
|
|
|
|
a_pow_r_minus_1 := QuadraticExtension{a[0], c.fieldAPI.Mul(a[1], c.DTH_ROOT).(F)}
|
|
a_pow_r := c.MulExtension(a_pow_r_minus_1, a)
|
|
return c.ScalarMulExtension(a_pow_r_minus_1, c.fieldAPI.Inverse(a_pow_r[0]).(F))
|
|
}
|
|
|
|
func (c *QuadraticExtensionAPI) ScalarMulExtension(a QuadraticExtension, scalar F) QuadraticExtension {
|
|
return QuadraticExtension{c.fieldAPI.Mul(a[0], scalar).(F), c.fieldAPI.Mul(a[1], scalar).(F)}
|
|
}
|
|
|
|
func (c *QuadraticExtensionAPI) FieldToQE(a F) QuadraticExtension {
|
|
return QuadraticExtension{a, ZERO_F}
|
|
}
|
|
|
|
// / Exponentiate `base` to the power of a known `exponent`.
|
|
func (c *QuadraticExtensionAPI) ExpU64Extension(a QuadraticExtension, exponent uint64) QuadraticExtension {
|
|
switch exponent {
|
|
case 0:
|
|
return c.ONE_QE
|
|
case 1:
|
|
return a
|
|
case 2:
|
|
return c.SquareExtension(a)
|
|
default:
|
|
}
|
|
|
|
current := a
|
|
product := c.ONE_QE
|
|
|
|
for i := 0; i < bits.Len64(exponent); i++ {
|
|
if i != 0 {
|
|
current = c.SquareExtension(current)
|
|
}
|
|
|
|
if (exponent >> i & 1) != 0 {
|
|
product = c.MulExtension(product, current)
|
|
}
|
|
}
|
|
|
|
return product
|
|
}
|
|
|
|
func (c *QuadraticExtensionAPI) ReduceWithPowers(terms []QuadraticExtension, scalar QuadraticExtension) QuadraticExtension {
|
|
sum := c.ZERO_QE
|
|
|
|
for i := len(terms) - 1; i >= 0; i-- {
|
|
sum = c.AddExtension(
|
|
c.MulExtension(
|
|
sum,
|
|
scalar,
|
|
),
|
|
terms[i],
|
|
)
|
|
}
|
|
|
|
return sum
|
|
}
|
|
|
|
func (c *QuadraticExtensionAPI) Select(b frontend.Variable, qe0, qe1 QuadraticExtension) QuadraticExtension {
|
|
var retQE QuadraticExtension
|
|
|
|
for i := 0; i < 2; i++ {
|
|
retQE[i] = c.fieldAPI.Select(b, qe0[i], qe1[i]).(F)
|
|
}
|
|
|
|
return retQE
|
|
}
|
|
|
|
func (c *QuadraticExtensionAPI) Lookup2(b0 frontend.Variable, b1 frontend.Variable, qe0, qe1, qe2, qe3 QuadraticExtension) QuadraticExtension {
|
|
var retQE QuadraticExtension
|
|
|
|
for i := 0; i < 2; i++ {
|
|
retQE[i] = c.fieldAPI.Lookup2(b0, b1, qe0[i], qe1[i], qe2[i], qe3[i]).(F)
|
|
}
|
|
|
|
return retQE
|
|
}
|
|
|
|
func (c *QuadraticExtensionAPI) AssertIsEqual(a, b QuadraticExtension) {
|
|
for i := 0; i < 2; i++ {
|
|
c.fieldAPI.AssertIsEqual(a[i], b[i])
|
|
}
|
|
}
|
|
|
|
func (c *QuadraticExtensionAPI) InnerProductExtension(constant F, startingAcc QuadraticExtension, pairs [][2]QuadraticExtension) QuadraticExtension {
|
|
acc := startingAcc
|
|
|
|
for i := 0; i < len(pairs); i++ {
|
|
a := pairs[i][0]
|
|
b := pairs[i][1]
|
|
mul := c.ScalarMulExtension(a, constant)
|
|
mul = c.MulExtension(mul, b)
|
|
acc = c.AddExtension(acc, mul)
|
|
}
|
|
|
|
return acc
|
|
}
|
|
|
|
func (c *QuadraticExtensionAPI) Println(a QuadraticExtension) {
|
|
fmt.Print("Degree 0 coefficient")
|
|
c.fieldAPI.Println(a[0])
|
|
|
|
fmt.Print("Degree 1 coefficient")
|
|
c.fieldAPI.Println(a[1])
|
|
}
|
|
|
|
func (c *QuadraticExtensionAPI) MulExtensionAlgebra(a, b QEAlgebra) QEAlgebra {
|
|
var inner [D][][2]QuadraticExtension
|
|
var inner_w [D][][2]QuadraticExtension
|
|
for i := 0; i < D; i++ {
|
|
for j := 0; j < D-i; j++ {
|
|
idx := (i + j) % D
|
|
inner[idx] = append(inner[idx], [2]QuadraticExtension{a[i], b[j]})
|
|
}
|
|
for j := D - i; j < D; j++ {
|
|
idx := (i + j) % D
|
|
inner_w[idx] = append(inner_w[idx], [2]QuadraticExtension{a[i], b[j]})
|
|
}
|
|
}
|
|
|
|
var product QEAlgebra
|
|
for i := 0; i < D; i++ {
|
|
acc := c.InnerProductExtension(NewFieldElement(7), c.ZERO_QE, inner_w[i])
|
|
product[i] = c.InnerProductExtension(ONE_F, acc, inner[i])
|
|
}
|
|
|
|
return product
|
|
}
|
|
|
|
func (c *QuadraticExtensionAPI) ScalarMulExtensionAlgebra(a QuadraticExtension, b QEAlgebra) QEAlgebra {
|
|
var product QEAlgebra
|
|
for i := 0; i < D; i++ {
|
|
product[i] = c.MulExtension(a, b[i])
|
|
}
|
|
|
|
return product
|
|
}
|
|
|
|
func (c *QuadraticExtensionAPI) AddExtensionAlgebra(a, b QEAlgebra) QEAlgebra {
|
|
var sum QEAlgebra
|
|
for i := 0; i < D; i++ {
|
|
sum[i] = c.AddExtension(a[i], b[i])
|
|
}
|
|
|
|
return sum
|
|
}
|
|
|
|
func (c *QuadraticExtensionAPI) SubExtensionAlgebra(a, b QEAlgebra) QEAlgebra {
|
|
var diff QEAlgebra
|
|
for i := 0; i < D; i++ {
|
|
diff[i] = c.SubExtension(a[i], b[i])
|
|
}
|
|
|
|
return diff
|
|
}
|