|
|
// Package blindsecp256k1 implements the Blind signature scheme explained at
// "New Blind Signature Schemes Based on the (Elliptic Curve) Discrete
// Logarithm Problem", by Hamid Mala & Nafiseh Nezhadansari
// https://sci-hub.do/10.1109/ICCKE.2013.6682844
//
// LICENSE can be found at https://github.com/arnaucube/go-blindsecp256k1/blob/master/LICENSE
//
package blindsecp256k1
// WARNING: WIP code
import ( "bytes" "crypto/elliptic" "crypto/rand" "fmt" "math/big"
"github.com/ethereum/go-ethereum/crypto" )
// TMP
// const (
// // MinBigIntBytesLen defines the minimum bytes length of the minimum
// // accepted value for the checked *big.Int
// MinBigIntBytesLen = 20 * 8
// )
var ( zero *big.Int = big.NewInt(0) )
// Curve is a curve wrapper that works with Point structs
type Curve struct { c elliptic.Curve }
// Point represents a point on the secp256k1 curve
type Point struct { X *big.Int Y *big.Int }
// Add performs the Point addition
func (c Curve) Add(p, q *Point) *Point { x, y := c.c.Add(p.X, p.Y, q.X, q.Y) return &Point{ X: x, Y: y, } }
// Mul performs the Point scalar multiplication
func (c Curve) Mul(p *Point, scalar *big.Int) *Point { x, y := c.c.ScalarMult(p.X, p.Y, scalar.Bytes()) return &Point{ X: x, Y: y, } }
func (c Curve) isValid(p *Point) error { if !c.c.IsOnCurve(p.X, p.Y) { return fmt.Errorf("Point is not on curve %s", c.c.Params().Name) }
if bytes.Equal(p.X.Bytes(), zero.Bytes()) && bytes.Equal(p.Y.Bytes(), zero.Bytes()) { return fmt.Errorf("Point (%s, %s) can not be (0, 0)", p.X.String(), p.Y.String()) } return nil }
// Compress packs a Point to a byte array of 33 bytes, encoded in little-endian.
func (p *Point) Compress() [33]byte { xBytes := p.X.Bytes() odd := byte(0) if isOdd(p.Y) { odd = byte(1) } var b [33]byte copy(b[32-len(xBytes):32], xBytes) b[32] = odd return b }
func isOdd(b *big.Int) bool { return b.Bit(0) != 0 }
// DecompressPoint unpacks a Point from the given byte array of 33 bytes
// https://bitcointalk.org/index.php?topic=162805.msg1712294#msg1712294
func DecompressPoint(curv elliptic.Curve, b [33]byte) (*Point, error) { x := new(big.Int).SetBytes(b[:32]) var odd bool if b[32] == byte(1) { odd = true }
// secp256k1: y2 = x3+ ax2 + b (where A==0, B==7)
params := curv.Params() B := params.B P := params.P
// compute x^3 + B mod p
x3 := new(big.Int).Mul(x, x) x3 = new(big.Int).Mul(x3, x) // x3 := new(big.Int).Exp(x, big.NewInt(3), nil)
x3 = new(big.Int).Add(x3, B) x3 = new(big.Int).Mod(x3, P)
// sqrt mod p of x^3 + B
y := new(big.Int).ModSqrt(x3, P) if y == nil { return nil, fmt.Errorf("not sqrt mod of x^3") } if odd != isOdd(y) { y = new(big.Int).Sub(P, y) // TODO if needed Mod
}
// check that y is a square root of x^3 + B
y2 := new(big.Int).Mul(y, y) y2 = new(big.Int).Mod(y2, P) if !bytes.Equal(y2.Bytes(), x3.Bytes()) { return nil, fmt.Errorf("invalid square root") }
if odd != isOdd(y) { return nil, fmt.Errorf("odd does not match oddness") }
p := &Point{X: x, Y: y} return p, nil }
// WIP
func newRand(curv elliptic.Curve) *big.Int { var b [32]byte _, err := rand.Read(b[:]) if err != nil { panic(err) } bi := new(big.Int).SetBytes(b[:]) return new(big.Int).Mod(bi, curv.Params().N) }
// PrivateKey represents the signer's private key
type PrivateKey big.Int
// PublicKey represents the signer's public key
type PublicKey Point
// NewPrivateKey returns a new random private key
func NewPrivateKey(curv elliptic.Curve) *PrivateKey { k := newRand(curv) sk := PrivateKey(*k) return &sk }
// BigInt returns a *big.Int representation of the PrivateKey
func (sk *PrivateKey) BigInt() *big.Int { return (*big.Int)(sk) }
// Public returns the PublicKey from the PrivateKey
func (sk *PrivateKey) Public(curv elliptic.Curve) *PublicKey { // TODO change impl to use directly X, Y instead
// of Point wrapper. In order to have the impl more close to go interface
c := Curve{curv} G := &Point{ X: c.c.Params().Gx, Y: c.c.Params().Gy, } q := c.Mul(G, sk.BigInt()) pk := PublicKey{X: q.X, Y: q.Y} return &pk }
// Point returns a *Point representation of the PublicKey
func (pk *PublicKey) Point() *Point { return (*Point)(pk) }
// NewRequestParameters returns a new random k (secret) & R (public) parameters
func NewRequestParameters(curv elliptic.Curve) (*big.Int, *Point) { k := newRand(curv) G := &Point{ X: curv.Params().Gx, Y: curv.Params().Gy, } // R = kG
r := Curve{curv}.Mul(G, k) return k, r }
// BlindSign performs the blind signature on the given mBlinded using the
// PrivateKey and the secret k values
func (sk *PrivateKey) BlindSign(curv elliptic.Curve, mBlinded *big.Int, k *big.Int) (*big.Int, error) { c := Curve{curv} n := c.c.Params().N // TODO add pending checks
if mBlinded.Cmp(n) != -1 { return nil, fmt.Errorf("mBlinded not inside the finite field") } if bytes.Equal(mBlinded.Bytes(), big.NewInt(0).Bytes()) { return nil, fmt.Errorf("mBlinded can not be 0") } // TMP
// if mBlinded.BitLen() < MinBigIntBytesLen {
// return nil, fmt.Errorf("mBlinded too small")
// }
// s' = dm' + k
sBlind := new(big.Int).Add( new(big.Int).Mul(sk.BigInt(), mBlinded), k) sBlind = new(big.Int).Mod(sBlind, n) return sBlind, nil }
// UserSecretData contains the secret values from the User (a, b) and the
// public F
type UserSecretData struct { A *big.Int B *big.Int
F *Point // public (in the paper is named R)
}
// Blind performs the blinding operation on m using signerR parameter
func Blind(curv elliptic.Curve, m *big.Int, signerR *Point) (*big.Int, *UserSecretData, error) { c := Curve{curv} if err := c.isValid(signerR); err != nil { return nil, nil, fmt.Errorf("signerR %s", err) }
// TODO check if curv==signerR.curv
// TODO (once the Point abstraction is removed) check that signerR is
// in the curve
G := &Point{ X: curv.Params().Gx, Y: curv.Params().Gy, }
u := &UserSecretData{} u.A = newRand(curv) u.B = newRand(curv)
// (R) F = aR' + bG
aR := c.Mul(signerR, u.A) bG := c.Mul(G, u.B) u.F = c.Add(aR, bG)
// TODO check that F != O (point at infinity)
if err := c.isValid(u.F); err != nil { return nil, nil, fmt.Errorf("u.F %s", err) }
rx := new(big.Int).Mod(u.F.X, curv.Params().N)
// m' = a^-1 rx h(m)
ainv := new(big.Int).ModInverse(u.A, curv.Params().N) ainvrx := new(big.Int).Mul(ainv, rx) hBytes := crypto.Keccak256(m.Bytes()) h := new(big.Int).SetBytes(hBytes) mBlinded := new(big.Int).Mul(ainvrx, h) mBlinded = new(big.Int).Mod(mBlinded, curv.Params().N)
return mBlinded, u, nil }
// Signature contains the signature values S & F
type Signature struct { S *big.Int F *Point }
// Compress packs a Signature to a byte array of 65 bytes, encoded in
// little-endian.
func (s *Signature) Compress() [65]byte { var b [65]byte sBytes := s.S.Bytes() fBytes := s.F.Compress() copy(b[:32], swapEndianness(sBytes)) copy(b[32:], fBytes[:]) return b }
// DecompressSignature unpacks a Signature from the given byte array of 65 bytes
func DecompressSignature(curve elliptic.Curve, b [65]byte) (*Signature, error) { s := new(big.Int).SetBytes(swapEndianness(b[:32])) var fBytes [33]byte copy(fBytes[:], b[32:]) f, err := DecompressPoint(curve, fBytes) if err != nil { return nil, err } sig := &Signature{S: s, F: f} return sig, nil }
// Unblind performs the unblinding operation of the blinded signature for the
// given the UserSecretData
func Unblind(curv elliptic.Curve, sBlind *big.Int, u *UserSecretData) *Signature { // s = a s' + b
as := new(big.Int).Mul(u.A, sBlind) s := new(big.Int).Add(as, u.B) s = new(big.Int).Mod(s, curv.Params().N)
return &Signature{ S: s, F: u.F, } }
// Verify checks the signature of the message m for the given PublicKey
func Verify(curv elliptic.Curve, m *big.Int, s *Signature, q *PublicKey) bool { // TODO add pending checks
c := Curve{curv} if err := c.isValid(s.F); err != nil { return false } if err := c.isValid(q.Point()); err != nil { return false }
G := &Point{ X: curv.Params().Gx, Y: curv.Params().Gy, } sG := c.Mul(G, s.S) // sG
hBytes := crypto.Keccak256(m.Bytes()) h := new(big.Int).SetBytes(hBytes)
rx := new(big.Int).Mod(s.F.X, curv.Params().N) rxh := new(big.Int).Mul(rx, h) // rxhG := G.Mul(rxh) // originally the paper uses G
rxhG := c.Mul(q.Point(), rxh)
right := c.Add(s.F, rxhG)
// check sG == R + rx h(m) Q (where R in this code is F)
if bytes.Equal(sG.X.Bytes(), right.X.Bytes()) && bytes.Equal(sG.Y.Bytes(), right.Y.Bytes()) { return true } return false }
|