|
|
// Package blindsecp256k1 implements the Blind signature scheme explained at
// "New Blind Signature Schemes Based on the (Elliptic Curve) Discrete
// Logarithm Problem", by Hamid Mala & Nafiseh Nezhadansari
// https://sci-hub.do/10.1109/ICCKE.2013.6682844
//
// LICENSE can be found at https://github.com/arnaucube/go-blindsecp256k1/blob/master/LICENSE
//
package blindsecp256k1
// WARNING: WIP code
import ( "bytes" "crypto/rand" "fmt" "math/big"
"github.com/btcsuite/btcd/btcec" "github.com/ethereum/go-ethereum/crypto" )
// TMP
// const (
// // MinBigIntBytesLen defines the minimum bytes length of the minimum
// // accepted value for the checked *big.Int
// MinBigIntBytesLen = 20 * 8
// )
var ( // G represents the base point of secp256k1
G *Point = &Point{ X: btcec.S256().Gx, Y: btcec.S256().Gy, }
// N represents the order of G of secp256k1
N *big.Int = btcec.S256().N
zero *big.Int = big.NewInt(0) )
// Point represents a point on the secp256k1 curve
type Point struct { X *big.Int Y *big.Int }
// Add performs the Point addition
func (p *Point) Add(q *Point) *Point { x, y := btcec.S256().Add(p.X, p.Y, q.X, q.Y) return &Point{ X: x, Y: y, } }
// Mul performs the Point scalar multiplication
func (p *Point) Mul(scalar *big.Int) *Point { x, y := btcec.S256().ScalarMult(p.X, p.Y, scalar.Bytes()) return &Point{ X: x, Y: y, } }
func (p *Point) isValid() error { if !btcec.S256().IsOnCurve(p.X, p.Y) { return fmt.Errorf("Point is not on secp256k1") }
if bytes.Equal(p.X.Bytes(), zero.Bytes()) && bytes.Equal(p.Y.Bytes(), zero.Bytes()) { return fmt.Errorf("Point (%s, %s) can not be (0, 0)", p.X.String(), p.Y.String()) } return nil }
// WIP
func newRand() *big.Int { var b [32]byte _, err := rand.Read(b[:]) if err != nil { panic(err) } bi := new(big.Int).SetBytes(b[:]) return new(big.Int).Mod(bi, N) }
// PrivateKey represents the signer's private key
type PrivateKey big.Int
// PublicKey represents the signer's public key
type PublicKey Point
// NewPrivateKey returns a new random private key
func NewPrivateKey() *PrivateKey { k := newRand() sk := PrivateKey(*k) return &sk }
// BigInt returns a *big.Int representation of the PrivateKey
func (sk *PrivateKey) BigInt() *big.Int { return (*big.Int)(sk) }
// Public returns the PublicKey from the PrivateKey
func (sk *PrivateKey) Public() *PublicKey { Q := G.Mul(sk.BigInt()) pk := PublicKey(*Q) return &pk }
// Point returns a *Point representation of the PublicKey
func (pk *PublicKey) Point() *Point { return (*Point)(pk) }
// NewRequestParameters returns a new random k (secret) & R (public) parameters
func NewRequestParameters() (*big.Int, *Point) { k := newRand() return k, G.Mul(k) // R = kG
}
// BlindSign performs the blind signature on the given mBlinded using the
// PrivateKey and the secret k values
func (sk *PrivateKey) BlindSign(mBlinded *big.Int, k *big.Int) (*big.Int, error) { // TODO add pending checks
if mBlinded.Cmp(N) != -1 { return nil, fmt.Errorf("mBlinded not inside the finite field") } if bytes.Equal(mBlinded.Bytes(), big.NewInt(0).Bytes()) { return nil, fmt.Errorf("mBlinded can not be 0") } // TMP
// if mBlinded.BitLen() < MinBigIntBytesLen {
// return nil, fmt.Errorf("mBlinded too small")
// }
// s' = dm' + k
sBlind := new(big.Int).Add( new(big.Int).Mul(sk.BigInt(), mBlinded), k) sBlind = new(big.Int).Mod(sBlind, N) return sBlind, nil }
// UserSecretData contains the secret values from the User (a, b) and the
// public F
type UserSecretData struct { A *big.Int B *big.Int
F *Point // public (in the paper is named R)
}
// Blind performs the blinding operation on m using signerR parameter
func Blind(m *big.Int, signerR *Point) (*big.Int, *UserSecretData, error) { if !btcec.S256().IsOnCurve(signerR.X, signerR.Y) { return nil, nil, fmt.Errorf("signerR point is not on secp256k1") }
u := &UserSecretData{} u.A = newRand() u.B = newRand()
// (R) F = aR' + bG
aR := signerR.Mul(u.A) bG := G.Mul(u.B) u.F = aR.Add(bG)
// TODO check that F != O (point at infinity)
if err := u.F.isValid(); err != nil { return nil, nil, err }
rx := new(big.Int).Mod(u.F.X, N)
// m' = a^-1 rx h(m)
ainv := new(big.Int).ModInverse(u.A, N) ainvrx := new(big.Int).Mul(ainv, rx) hBytes := crypto.Keccak256(m.Bytes()) h := new(big.Int).SetBytes(hBytes) mBlinded := new(big.Int).Mul(ainvrx, h) mBlinded = new(big.Int).Mod(mBlinded, N)
return mBlinded, u, nil }
// Signature contains the signature values S & F
type Signature struct { S *big.Int F *Point }
// Unblind performs the unblinding operation of the blinded signature for the
// given the UserSecretData
func Unblind(sBlind *big.Int, u *UserSecretData) *Signature { // s = a s' + b
as := new(big.Int).Mul(u.A, sBlind) s := new(big.Int).Add(as, u.B) s = new(big.Int).Mod(s, N)
return &Signature{ S: s, F: u.F, } }
// Verify checks the signature of the message m for the given PublicKey
func Verify(m *big.Int, s *Signature, q *PublicKey) bool { // TODO add pending checks
if err := s.F.isValid(); err != nil { return false } if err := q.Point().isValid(); err != nil { return false }
sG := G.Mul(s.S) // sG
hBytes := crypto.Keccak256(m.Bytes()) h := new(big.Int).SetBytes(hBytes)
rx := new(big.Int).Mod(s.F.X, N) rxh := new(big.Int).Mul(rx, h) // rxhG := G.Mul(rxh) // originally the paper uses G
rxhG := q.Point().Mul(rxh)
right := s.F.Add(rxhG)
// check sG == R + rx h(m) Q (where R in this code is F)
if bytes.Equal(sG.X.Bytes(), right.X.Bytes()) && bytes.Equal(sG.Y.Bytes(), right.Y.Bytes()) { return true } return false }
|