|
|
// Package blindsecp256k1v0 implements the Blind signature scheme explained at
// "An Efficient Blind Signature Scheme Based on the Elliptic Curve Discrete
// Logarithm Problem", by Morteza Nikooghadama & Ali Zakerolhosseini
// http://www.isecure-journal.com/article_39171_47f9ec605dd3918c2793565ec21fcd7a.pdf
//
// LICENSE can be found at https://github.com/arnaucube/go-blindsecp256k1/blob/master/LICENSE
//
package blindsecp256k1v0
// WARNING: WIP code
import ( "bytes" "crypto/rand" "math/big"
"github.com/arnaucube/go-blindsecp256k1" )
// WIP
func newRand() *big.Int { var b [32]byte _, err := rand.Read(b[:]) if err != nil { panic(err) } bi := new(big.Int).SetBytes(b[:]) return new(big.Int).Mod(bi, blindsecp256k1.N) }
// PrivateKey represents the signer's private key
type PrivateKey big.Int
// NewPrivateKey returns a new random private key
func NewPrivateKey() *PrivateKey { k := newRand() sk := PrivateKey(*k) return &sk }
// BigInt returns a *big.Int representation of the PrivateKey
func (sk *PrivateKey) BigInt() *big.Int { return (*big.Int)(sk) }
// Public returns the PublicKey from the PrivateKey
func (sk *PrivateKey) Public() *blindsecp256k1.PublicKey { Q := blindsecp256k1.G.Mul(sk.BigInt()) pk := blindsecp256k1.PublicKey(*Q) return &pk }
// NewRequestParameters returns a new random k (secret) & R (public) parameters
func NewRequestParameters() (*big.Int, *blindsecp256k1.Point) { k := newRand() return k, blindsecp256k1.G.Mul(k) // R = kG
}
// BlindSign performs the blind signature on the given mBlinded using
// SignerPrivateData values
func (sk *PrivateKey) BlindSign(mBlinded *big.Int, k *big.Int) *big.Int { // TODO add pending checks
// s' = d(m') + k
sBlind := new(big.Int).Add( new(big.Int).Mul(sk.BigInt(), mBlinded), k) return sBlind }
// UserSecretData contains the secret values from the User (a, b, c) and the
// public F
type UserSecretData struct { A *big.Int B *big.Int C *big.Int
F *blindsecp256k1.Point // public
}
// Blind performs the blinding operation on m using SignerPublicData parameters
func Blind(m *big.Int, signerPubK *blindsecp256k1.PublicKey, signerR *blindsecp256k1.Point) (*big.Int, *UserSecretData) { u := &UserSecretData{} u.A = newRand() u.B = newRand() u.C = newRand() binv := new(big.Int).ModInverse(u.B, blindsecp256k1.N)
// F = b^-1 R + a b^-1 Q + c G
bR := signerR.Mul(binv) abinv := new(big.Int).Mul(u.A, binv) abinv = new(big.Int).Mod(abinv, blindsecp256k1.N) abQ := signerPubK.Point().Mul(abinv) cG := blindsecp256k1.G.Mul(u.C) u.F = bR.Add(abQ).Add(cG) // TODO check F==O
r := new(big.Int).Mod(u.F.X, blindsecp256k1.N)
// m' = br(m)+a
br := new(big.Int).Mul(u.B, r) brm := new(big.Int).Mul(br, m) mBlinded := new(big.Int).Add(brm, u.A) mBlinded = new(big.Int).Mod(mBlinded, blindsecp256k1.N) return mBlinded, u }
// Signature contains the signature values S & F
type Signature struct { S *big.Int F *blindsecp256k1.Point }
// Unblind performs the unblinding operation of the blinded signature for the
// given message m and the UserSecretData
func Unblind(sBlind, m *big.Int, u *UserSecretData) *Signature { // s = b^-1 s' + c
binv := new(big.Int).ModInverse(u.B, blindsecp256k1.N) bs := new(big.Int).Mul(binv, sBlind) s := new(big.Int).Add(bs, u.C) s = new(big.Int).Mod(s, blindsecp256k1.N)
return &Signature{ S: s, F: u.F, } }
// Verify checks the signature of the message m for the given PublicKey
func Verify(m *big.Int, signature *Signature, q *blindsecp256k1.PublicKey) bool { // TODO add pending checks
sG := blindsecp256k1.G.Mul(signature.S) // sG
r := new(big.Int).Mod(signature.F.X, blindsecp256k1.N) // r = Fx mod N
rm := new(big.Int).Mul(r, m) rm = new(big.Int).Mod(rm, blindsecp256k1.N) rmQ := q.Point().Mul(rm) rmQF := rmQ.Add(signature.F) // rmQ + F
// check sG == rmQ + F
if bytes.Equal(sG.X.Bytes(), rmQF.X.Bytes()) && bytes.Equal(sG.Y.Bytes(), rmQF.Y.Bytes()) { return true } return false }
|