Previous to this commit there was the implementation of "[An Efficient Blind Signature Scheme Based on the Elliptic Curve Discrete Logarithm Problem](http://www.isecure-journal.com/article_39171_47f9ec605dd3918c2793565ec21fcd7a.pdf)" paper by by Morteza Nikooghadama & Ali Zakerolhosseini.

This commit adds the implementation of "[New Blind Signature Schemes Based on the (Elliptic Curve) Discrete Logarithm Problem](https://sci-hub.do/10.1109/ICCKE.2013.6682844)" paper by Hamid Mala & Nafiseh Nezhadansari.
This commit is contained in:
arnaucube
2021-01-11 21:08:46 +01:00
parent c3e4afc552
commit ec095bba83
10 changed files with 573 additions and 42 deletions

5
v0/README.md Normal file
View File

@@ -0,0 +1,5 @@
# go-blindsecp256k1/v0
The directory `v0` implements the blind signature over [secp256k1](https://en.bitcoin.it/wiki/Secp256k1), based on *"[An Efficient Blind Signature Scheme Based on the Elliptic Curve Discrete Logarithm Problem](http://www.isecure-journal.com/article_39171_47f9ec605dd3918c2793565ec21fcd7a.pdf)"* paper by by Morteza Nikooghadama & Ali Zakerolhosseini.
The implementation of *"[New Blind Signature Schemes Based on the (Elliptic Curve) Discrete Logarithm Problem](https://sci-hub.do/10.1109/ICCKE.2013.6682844)"* paper by Hamid Mala & Nafiseh Nezhadansari, can be found at the root directory of this repository: https://github.com/arnaucube/go-blindsecp256k1

214
v0/blindsecp256k1v0.go Normal file
View File

@@ -0,0 +1,214 @@
// Package blindsecp256k1v0 implements the Blind signature scheme explained at
// "An Efficient Blind Signature Scheme Based on the Elliptic Curve Discrete
// Logarithm Problem", by Morteza Nikooghadama & Ali Zakerolhosseini
// http://www.isecure-journal.com/article_39171_47f9ec605dd3918c2793565ec21fcd7a.pdf
//
// LICENSE can be found at https://github.com/arnaucube/go-blindsecp256k1/blob/master/LICENSE
//
package blindsecp256k1v0
// WARNING: WIP code
import (
"bytes"
"crypto/rand"
"math/big"
"github.com/btcsuite/btcd/btcec"
)
var (
// G represents the base point of secp256k1
G *Point = &Point{
X: btcec.S256().Gx,
Y: btcec.S256().Gy,
}
// N represents the order of G of secp256k1
N *big.Int = btcec.S256().N
)
// Point represents a point on the secp256k1 curve
type Point struct {
X *big.Int
Y *big.Int
}
// Add performs the Point addition
func (p *Point) Add(q *Point) *Point {
x, y := btcec.S256().Add(p.X, p.Y, q.X, q.Y)
return &Point{
X: x,
Y: y,
}
}
// Mul performs the Point scalar multiplication
func (p *Point) Mul(scalar *big.Int) *Point {
x, y := btcec.S256().ScalarMult(p.X, p.Y, scalar.Bytes())
return &Point{
X: x,
Y: y,
}
}
// WIP
func newRand() *big.Int {
var b [32]byte
_, err := rand.Read(b[:])
if err != nil {
panic(err)
}
bi := new(big.Int).SetBytes(b[:])
return new(big.Int).Mod(bi, N)
}
// PrivateKey represents the signer's private key
type PrivateKey big.Int
// PublicKey represents the signer's public key
type PublicKey Point
// NewPrivateKey returns a new random private key
func NewPrivateKey() *PrivateKey {
k := newRand()
sk := PrivateKey(*k)
return &sk
}
// BigInt returns a *big.Int representation of the PrivateKey
func (sk *PrivateKey) BigInt() *big.Int {
return (*big.Int)(sk)
}
// Public returns the PublicKey from the PrivateKey
func (sk *PrivateKey) Public() *PublicKey {
Q := G.Mul(sk.BigInt())
pk := PublicKey(*Q)
return &pk
}
// Point returns a *Point representation of the PublicKey
func (pk *PublicKey) Point() *Point {
return (*Point)(pk)
}
// SignerPrivateData contains the secret values from the Signer
type SignerPrivateData struct {
D *PrivateKey
K *big.Int
}
// SignerPublicData contains the public values from the Signer (generated from
// its SignerPrivateData)
type SignerPublicData struct {
// Q is the Signer Public Key
Q *PublicKey // = skG
R *Point // = kG
}
// NewSigner returns a new SignerPrivateData with random D & K
func NewSigner() *SignerPrivateData {
sk := NewPrivateKey()
k := newRand()
return &SignerPrivateData{
D: sk,
K: k,
}
}
// PublicData returns the SignerPublicData from the SignerPrivateData
func (signer *SignerPrivateData) PublicData() *SignerPublicData {
return &SignerPublicData{
Q: signer.D.Public(), // Q = dG
R: G.Mul(signer.K), // R = kG
}
}
// BlindSign performs the blind signature on the given mBlinded using
// SignerPrivateData values
func (signer *SignerPrivateData) BlindSign(mBlinded *big.Int) *big.Int {
// TODO add pending checks
// s' = d(m') + k
sBlind := new(big.Int).Add(
new(big.Int).Mul(signer.D.BigInt(), mBlinded),
signer.K)
return sBlind
}
// UserSecretData contains the secret values from the User (a, b, c) and the
// public F
type UserSecretData struct {
A *big.Int
B *big.Int
C *big.Int
F *Point // public
}
// Blind performs the blinding operation on m using SignerPublicData parameters
func Blind(m *big.Int, signer *SignerPublicData) (*big.Int, *UserSecretData) {
u := &UserSecretData{}
u.A = newRand()
u.B = newRand()
u.C = newRand()
binv := new(big.Int).ModInverse(u.B, N)
// F = b^-1 R + a b^-1 Q + c G
bR := signer.R.Mul(binv)
abinv := new(big.Int).Mul(u.A, binv)
abinv = new(big.Int).Mod(abinv, N)
abQ := signer.Q.Point().Mul(abinv)
cG := G.Mul(u.C)
u.F = bR.Add(abQ).Add(cG)
// TODO check F==O
r := new(big.Int).Mod(u.F.X, N)
// m' = br(m)+a
br := new(big.Int).Mul(u.B, r)
brm := new(big.Int).Mul(br, m)
mBlinded := new(big.Int).Add(brm, u.A)
mBlinded = new(big.Int).Mod(mBlinded, N)
return mBlinded, u
}
// Signature contains the signature values S & F
type Signature struct {
S *big.Int
F *Point
}
// Unblind performs the unblinding operation of the blinded signature for the
// given message m and the UserSecretData
func Unblind(sBlind, m *big.Int, u *UserSecretData) *Signature {
// s = b^-1 s' + c
binv := new(big.Int).ModInverse(u.B, N)
bs := new(big.Int).Mul(binv, sBlind)
s := new(big.Int).Add(bs, u.C)
s = new(big.Int).Mod(s, N)
return &Signature{
S: s,
F: u.F,
}
}
// Verify checks the signature of the message m for the given PublicKey
func Verify(m *big.Int, signature *Signature, q *PublicKey) bool {
// TODO add pending checks
sG := G.Mul(signature.S) // sG
r := new(big.Int).Mod(signature.F.X, N) // r = Fx mod N
rm := new(big.Int).Mul(r, m)
rm = new(big.Int).Mod(rm, N)
rmQ := q.Point().Mul(rm)
rmQF := rmQ.Add(signature.F) // rmQ + F
// check sG == rmQ + F
if bytes.Equal(sG.X.Bytes(), rmQF.X.Bytes()) &&
bytes.Equal(sG.Y.Bytes(), rmQF.Y.Bytes()) {
return true
}
return false
}

View File

@@ -0,0 +1,30 @@
package blindsecp256k1v0
import (
"math/big"
"testing"
"github.com/stretchr/testify/assert"
)
func TestFlow(t *testing.T) {
// message to be signed
msg := new(big.Int).SetBytes([]byte("test"))
// create new signer
signerPrivateData := NewSigner()
signerPublicData := signerPrivateData.PublicData()
// user blinds the msg
msgBlinded, user := Blind(msg, signerPublicData)
// signer signs the blinded message
sBlind := signerPrivateData.BlindSign(msgBlinded)
// user unblinds the blinded signature
sig := Unblind(sBlind, msg, user)
// signature can be verified with signer PublicKey (Q)
verified := Verify(msg, sig, signerPublicData.Q)
assert.True(t, verified)
}