// Package blindsecp256k1 implements the Blind signature scheme explained at // "New Blind Signature Schemes Based on the (Elliptic Curve) Discrete // Logarithm Problem", by Hamid Mala & Nafiseh Nezhadansari // https://sci-hub.do/10.1109/ICCKE.2013.6682844 // // LICENSE can be found at https://github.com/arnaucube/go-blindsecp256k1/blob/master/LICENSE // package blindsecp256k1 // WARNING: WIP code import ( "bytes" "crypto/rand" "fmt" "math/big" "github.com/btcsuite/btcd/btcec" "github.com/ethereum/go-ethereum/crypto" ) // TMP // const ( // // MinBigIntBytesLen defines the minimum bytes length of the minimum // // accepted value for the checked *big.Int // MinBigIntBytesLen = 20 * 8 // ) var ( zero *big.Int = big.NewInt(0) // B (from y^2 = x^3 + B) B *big.Int = btcec.S256().B // P represents the secp256k1 finite field P *big.Int = btcec.S256().P // Q = (P+1)/4 Q = new(big.Int).Div(new(big.Int).Add(P, big.NewInt(1)), big.NewInt(4)) // nolint:gomnd // G represents the base point of secp256k1 G *Point = &Point{ X: btcec.S256().Gx, Y: btcec.S256().Gy, } // N represents the order of G of secp256k1 N *big.Int = btcec.S256().N ) // Point represents a point on the secp256k1 curve type Point struct { X *big.Int Y *big.Int } // Add performs the Point addition func (p *Point) Add(q *Point) *Point { x, y := btcec.S256().Add(p.X, p.Y, q.X, q.Y) return &Point{ X: x, Y: y, } } // Mul performs the Point scalar multiplication func (p *Point) Mul(scalar *big.Int) *Point { x, y := btcec.S256().ScalarMult(p.X, p.Y, scalar.Bytes()) return &Point{ X: x, Y: y, } } func (p *Point) isValid() error { if !btcec.S256().IsOnCurve(p.X, p.Y) { return fmt.Errorf("Point is not on secp256k1") } if bytes.Equal(p.X.Bytes(), zero.Bytes()) && bytes.Equal(p.Y.Bytes(), zero.Bytes()) { return fmt.Errorf("Point (%s, %s) can not be (0, 0)", p.X.String(), p.Y.String()) } return nil } // Compress packs a Point to a byte array of 33 bytes, encoded in little-endian. func (p *Point) Compress() [33]byte { xBytes := p.X.Bytes() odd := byte(0) if isOdd(p.Y) { odd = byte(1) } var b [33]byte copy(b[32-len(xBytes):32], xBytes) b[32] = odd return b } func isOdd(b *big.Int) bool { return b.Bit(0) != 0 } // DecompressPoint unpacks a Point from the given byte array of 33 bytes // https://bitcointalk.org/index.php?topic=162805.msg1712294#msg1712294 func DecompressPoint(b [33]byte) (*Point, error) { x := new(big.Int).SetBytes(b[:32]) var odd bool if b[32] == byte(1) { odd = true } // secp256k1: y2 = x3+ ax2 + b (where A==0, B==7) // compute x^3 + B mod p x3 := new(big.Int).Mul(x, x) x3 = new(big.Int).Mul(x3, x) // x3 := new(big.Int).Exp(x, big.NewInt(3), nil) x3 = new(big.Int).Add(x3, B) x3 = new(big.Int).Mod(x3, P) // sqrt mod p of x^3 + B y := new(big.Int).ModSqrt(x3, P) if y == nil { return nil, fmt.Errorf("not sqrt mod of x^3") } if odd != isOdd(y) { y = new(big.Int).Sub(P, y) // TODO if needed Mod } // check that y is a square root of x^3 + B y2 := new(big.Int).Mul(y, y) y2 = new(big.Int).Mod(y2, P) if !bytes.Equal(y2.Bytes(), x3.Bytes()) { return nil, fmt.Errorf("invalid square root") } if odd != isOdd(y) { return nil, fmt.Errorf("odd does not match oddness") } p := &Point{X: x, Y: y} return p, nil } // WIP func newRand() *big.Int { var b [32]byte _, err := rand.Read(b[:]) if err != nil { panic(err) } bi := new(big.Int).SetBytes(b[:]) return new(big.Int).Mod(bi, N) } // PrivateKey represents the signer's private key type PrivateKey big.Int // PublicKey represents the signer's public key type PublicKey Point // NewPrivateKey returns a new random private key func NewPrivateKey() *PrivateKey { k := newRand() sk := PrivateKey(*k) return &sk } // BigInt returns a *big.Int representation of the PrivateKey func (sk *PrivateKey) BigInt() *big.Int { return (*big.Int)(sk) } // Public returns the PublicKey from the PrivateKey func (sk *PrivateKey) Public() *PublicKey { Q := G.Mul(sk.BigInt()) pk := PublicKey(*Q) return &pk } // Point returns a *Point representation of the PublicKey func (pk *PublicKey) Point() *Point { return (*Point)(pk) } // NewRequestParameters returns a new random k (secret) & R (public) parameters func NewRequestParameters() (*big.Int, *Point) { k := newRand() return k, G.Mul(k) // R = kG } // BlindSign performs the blind signature on the given mBlinded using the // PrivateKey and the secret k values func (sk *PrivateKey) BlindSign(mBlinded *big.Int, k *big.Int) (*big.Int, error) { // TODO add pending checks if mBlinded.Cmp(N) != -1 { return nil, fmt.Errorf("mBlinded not inside the finite field") } if bytes.Equal(mBlinded.Bytes(), big.NewInt(0).Bytes()) { return nil, fmt.Errorf("mBlinded can not be 0") } // TMP // if mBlinded.BitLen() < MinBigIntBytesLen { // return nil, fmt.Errorf("mBlinded too small") // } // s' = dm' + k sBlind := new(big.Int).Add( new(big.Int).Mul(sk.BigInt(), mBlinded), k) sBlind = new(big.Int).Mod(sBlind, N) return sBlind, nil } // UserSecretData contains the secret values from the User (a, b) and the // public F type UserSecretData struct { A *big.Int B *big.Int F *Point // public (in the paper is named R) } // Blind performs the blinding operation on m using signerR parameter func Blind(m *big.Int, signerR *Point) (*big.Int, *UserSecretData, error) { if err := signerR.isValid(); err != nil { return nil, nil, fmt.Errorf("signerR %s", err) } u := &UserSecretData{} u.A = newRand() u.B = newRand() // (R) F = aR' + bG aR := signerR.Mul(u.A) bG := G.Mul(u.B) u.F = aR.Add(bG) // TODO check that F != O (point at infinity) if err := u.F.isValid(); err != nil { return nil, nil, fmt.Errorf("u.F %s", err) } rx := new(big.Int).Mod(u.F.X, N) // m' = a^-1 rx h(m) ainv := new(big.Int).ModInverse(u.A, N) ainvrx := new(big.Int).Mul(ainv, rx) hBytes := crypto.Keccak256(m.Bytes()) h := new(big.Int).SetBytes(hBytes) mBlinded := new(big.Int).Mul(ainvrx, h) mBlinded = new(big.Int).Mod(mBlinded, N) return mBlinded, u, nil } // Signature contains the signature values S & F type Signature struct { S *big.Int F *Point } // Compress packs a Signature to a byte array of 65 bytes, encoded in // little-endian. func (s *Signature) Compress() [65]byte { var b [65]byte sBytes := s.S.Bytes() fBytes := s.F.Compress() copy(b[:32], swapEndianness(sBytes)) copy(b[32:], fBytes[:]) return b } // DecompressSignature unpacks a Signature from the given byte array of 65 bytes func DecompressSignature(b [65]byte) (*Signature, error) { s := new(big.Int).SetBytes(swapEndianness(b[:32])) var fBytes [33]byte copy(fBytes[:], b[32:]) f, err := DecompressPoint(fBytes) if err != nil { return nil, err } sig := &Signature{S: s, F: f} return sig, nil } // Unblind performs the unblinding operation of the blinded signature for the // given the UserSecretData func Unblind(sBlind *big.Int, u *UserSecretData) *Signature { // s = a s' + b as := new(big.Int).Mul(u.A, sBlind) s := new(big.Int).Add(as, u.B) s = new(big.Int).Mod(s, N) return &Signature{ S: s, F: u.F, } } // Verify checks the signature of the message m for the given PublicKey func Verify(m *big.Int, s *Signature, q *PublicKey) bool { // TODO add pending checks if err := s.F.isValid(); err != nil { return false } if err := q.Point().isValid(); err != nil { return false } sG := G.Mul(s.S) // sG hBytes := crypto.Keccak256(m.Bytes()) h := new(big.Int).SetBytes(hBytes) rx := new(big.Int).Mod(s.F.X, N) rxh := new(big.Int).Mul(rx, h) // rxhG := G.Mul(rxh) // originally the paper uses G rxhG := q.Point().Mul(rxh) right := s.F.Add(rxhG) // check sG == R + rx h(m) Q (where R in this code is F) if bytes.Equal(sG.X.Bytes(), right.X.Bytes()) && bytes.Equal(sG.Y.Bytes(), right.Y.Bytes()) { return true } return false }