You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

351 lines
8.4 KiB

// Package blindsecp256k1 implements the Blind signature scheme explained at
// "New Blind Signature Schemes Based on the (Elliptic Curve) Discrete
// Logarithm Problem", by Hamid Mala & Nafiseh Nezhadansari
// https://sci-hub.do/10.1109/ICCKE.2013.6682844
//
// LICENSE can be found at https://github.com/arnaucube/go-blindsecp256k1/blob/master/LICENSE
//
package blindsecp256k1
// WARNING: WIP code
import (
"bytes"
"crypto/elliptic"
"crypto/rand"
"fmt"
"math/big"
"github.com/ethereum/go-ethereum/crypto"
)
// TMP
// const (
// // MinBigIntBytesLen defines the minimum bytes length of the minimum
// // accepted value for the checked *big.Int
// MinBigIntBytesLen = 20 * 8
// )
var (
zero *big.Int = big.NewInt(0)
)
// Curve is a curve wrapper that works with Point structs
type Curve struct {
c elliptic.Curve
}
// Point represents a point on the secp256k1 curve
type Point struct {
X *big.Int
Y *big.Int
}
// Add performs the Point addition
func (c Curve) Add(p, q *Point) *Point {
x, y := c.c.Add(p.X, p.Y, q.X, q.Y)
return &Point{
X: x,
Y: y,
}
}
// Mul performs the Point scalar multiplication
func (c Curve) Mul(p *Point, scalar *big.Int) *Point {
x, y := c.c.ScalarMult(p.X, p.Y, scalar.Bytes())
return &Point{
X: x,
Y: y,
}
}
func (c Curve) isValid(p *Point) error {
if !c.c.IsOnCurve(p.X, p.Y) {
return fmt.Errorf("Point is not on curve %s", c.c.Params().Name)
}
if bytes.Equal(p.X.Bytes(), zero.Bytes()) &&
bytes.Equal(p.Y.Bytes(), zero.Bytes()) {
return fmt.Errorf("Point (%s, %s) can not be (0, 0)",
p.X.String(), p.Y.String())
}
return nil
}
// Compress packs a Point to a byte array of 33 bytes, encoded in little-endian.
func (p *Point) Compress() [33]byte {
xBytes := p.X.Bytes()
odd := byte(0)
if isOdd(p.Y) {
odd = byte(1)
}
var b [33]byte
copy(b[32-len(xBytes):32], xBytes)
b[32] = odd
return b
}
func isOdd(b *big.Int) bool {
return b.Bit(0) != 0
}
// DecompressPoint unpacks a Point from the given byte array of 33 bytes
// https://bitcointalk.org/index.php?topic=162805.msg1712294#msg1712294
func DecompressPoint(curv elliptic.Curve, b [33]byte) (*Point, error) {
x := new(big.Int).SetBytes(b[:32])
var odd bool
if b[32] == byte(1) {
odd = true
}
// secp256k1: y2 = x3+ ax2 + b (where A==0, B==7)
params := curv.Params()
B := params.B
P := params.P
// compute x^3 + B mod p
x3 := new(big.Int).Mul(x, x)
x3 = new(big.Int).Mul(x3, x)
// x3 := new(big.Int).Exp(x, big.NewInt(3), nil)
x3 = new(big.Int).Add(x3, B)
x3 = new(big.Int).Mod(x3, P)
// sqrt mod p of x^3 + B
y := new(big.Int).ModSqrt(x3, P)
if y == nil {
return nil, fmt.Errorf("not sqrt mod of x^3")
}
if odd != isOdd(y) {
y = new(big.Int).Sub(P, y)
// TODO if needed Mod
}
// check that y is a square root of x^3 + B
y2 := new(big.Int).Mul(y, y)
y2 = new(big.Int).Mod(y2, P)
if !bytes.Equal(y2.Bytes(), x3.Bytes()) {
return nil, fmt.Errorf("invalid square root")
}
if odd != isOdd(y) {
return nil, fmt.Errorf("odd does not match oddness")
}
p := &Point{X: x, Y: y}
return p, nil
}
// WIP
func newRand(curv elliptic.Curve) *big.Int {
var b [32]byte
_, err := rand.Read(b[:])
if err != nil {
panic(err)
}
bi := new(big.Int).SetBytes(b[:])
return new(big.Int).Mod(bi, curv.Params().N)
}
// PrivateKey represents the signer's private key
type PrivateKey big.Int
// PublicKey represents the signer's public key
type PublicKey Point
// NewPrivateKey returns a new random private key
func NewPrivateKey(curv elliptic.Curve) *PrivateKey {
k := newRand(curv)
sk := PrivateKey(*k)
return &sk
}
// BigInt returns a *big.Int representation of the PrivateKey
func (sk *PrivateKey) BigInt() *big.Int {
return (*big.Int)(sk)
}
// Public returns the PublicKey from the PrivateKey
func (sk *PrivateKey) Public(curv elliptic.Curve) *PublicKey {
// TODO change impl to use directly X, Y instead
// of Point wrapper. In order to have the impl more close to go interface
c := Curve{curv}
G := &Point{
X: c.c.Params().Gx,
Y: c.c.Params().Gy,
}
q := c.Mul(G, sk.BigInt())
pk := PublicKey{X: q.X, Y: q.Y}
return &pk
}
// Point returns a *Point representation of the PublicKey
func (pk *PublicKey) Point() *Point {
return (*Point)(pk)
}
// NewRequestParameters returns a new random k (secret) & R (public) parameters
func NewRequestParameters(curv elliptic.Curve) (*big.Int, *Point) {
k := newRand(curv)
G := &Point{
X: curv.Params().Gx,
Y: curv.Params().Gy,
}
// R = kG
r := Curve{curv}.Mul(G, k)
return k, r
}
// BlindSign performs the blind signature on the given mBlinded using the
// PrivateKey and the secret k values
func (sk *PrivateKey) BlindSign(curv elliptic.Curve, mBlinded *big.Int, k *big.Int) (*big.Int, error) {
c := Curve{curv}
n := c.c.Params().N
// TODO add pending checks
if mBlinded.Cmp(n) != -1 {
return nil, fmt.Errorf("mBlinded not inside the finite field")
}
if bytes.Equal(mBlinded.Bytes(), big.NewInt(0).Bytes()) {
return nil, fmt.Errorf("mBlinded can not be 0")
}
// TMP
// if mBlinded.BitLen() < MinBigIntBytesLen {
// return nil, fmt.Errorf("mBlinded too small")
// }
// s' = dm' + k
sBlind := new(big.Int).Add(
new(big.Int).Mul(sk.BigInt(), mBlinded),
k)
sBlind = new(big.Int).Mod(sBlind, n)
return sBlind, nil
}
// UserSecretData contains the secret values from the User (a, b) and the
// public F
type UserSecretData struct {
A *big.Int
B *big.Int
F *Point // public (in the paper is named R)
}
// Blind performs the blinding operation on m using signerR parameter
func Blind(curv elliptic.Curve, m *big.Int, signerR *Point) (*big.Int, *UserSecretData, error) {
c := Curve{curv}
if err := c.isValid(signerR); err != nil {
return nil, nil, fmt.Errorf("signerR %s", err)
}
// TODO check if curv==signerR.curv
// TODO (once the Point abstraction is removed) check that signerR is
// in the curve
G := &Point{
X: curv.Params().Gx,
Y: curv.Params().Gy,
}
u := &UserSecretData{}
u.A = newRand(curv)
u.B = newRand(curv)
// (R) F = aR' + bG
aR := c.Mul(signerR, u.A)
bG := c.Mul(G, u.B)
u.F = c.Add(aR, bG)
// TODO check that F != O (point at infinity)
if err := c.isValid(u.F); err != nil {
return nil, nil, fmt.Errorf("u.F %s", err)
}
rx := new(big.Int).Mod(u.F.X, curv.Params().N)
// m' = a^-1 rx h(m)
ainv := new(big.Int).ModInverse(u.A, curv.Params().N)
ainvrx := new(big.Int).Mul(ainv, rx)
hBytes := crypto.Keccak256(m.Bytes())
h := new(big.Int).SetBytes(hBytes)
mBlinded := new(big.Int).Mul(ainvrx, h)
mBlinded = new(big.Int).Mod(mBlinded, curv.Params().N)
return mBlinded, u, nil
}
// Signature contains the signature values S & F
type Signature struct {
S *big.Int
F *Point
}
// Compress packs a Signature to a byte array of 65 bytes, encoded in
// little-endian.
func (s *Signature) Compress() [65]byte {
var b [65]byte
sBytes := s.S.Bytes()
fBytes := s.F.Compress()
copy(b[:32], swapEndianness(sBytes))
copy(b[32:], fBytes[:])
return b
}
// DecompressSignature unpacks a Signature from the given byte array of 65 bytes
func DecompressSignature(curve elliptic.Curve, b [65]byte) (*Signature, error) {
s := new(big.Int).SetBytes(swapEndianness(b[:32]))
var fBytes [33]byte
copy(fBytes[:], b[32:])
f, err := DecompressPoint(curve, fBytes)
if err != nil {
return nil, err
}
sig := &Signature{S: s, F: f}
return sig, nil
}
// Unblind performs the unblinding operation of the blinded signature for the
// given the UserSecretData
func Unblind(curv elliptic.Curve, sBlind *big.Int, u *UserSecretData) *Signature {
// s = a s' + b
as := new(big.Int).Mul(u.A, sBlind)
s := new(big.Int).Add(as, u.B)
s = new(big.Int).Mod(s, curv.Params().N)
return &Signature{
S: s,
F: u.F,
}
}
// Verify checks the signature of the message m for the given PublicKey
func Verify(curv elliptic.Curve, m *big.Int, s *Signature, q *PublicKey) bool {
// TODO add pending checks
c := Curve{curv}
if err := c.isValid(s.F); err != nil {
return false
}
if err := c.isValid(q.Point()); err != nil {
return false
}
G := &Point{
X: curv.Params().Gx,
Y: curv.Params().Gy,
}
sG := c.Mul(G, s.S) // sG
hBytes := crypto.Keccak256(m.Bytes())
h := new(big.Int).SetBytes(hBytes)
rx := new(big.Int).Mod(s.F.X, curv.Params().N)
rxh := new(big.Int).Mul(rx, h)
// rxhG := G.Mul(rxh) // originally the paper uses G
rxhG := c.Mul(q.Point(), rxh)
right := c.Add(s.F, rxhG)
// check sG == R + rx h(m) Q (where R in this code is F)
if bytes.Equal(sG.X.Bytes(), right.X.Bytes()) &&
bytes.Equal(sG.Y.Bytes(), right.Y.Bytes()) {
return true
}
return false
}