// Package blindsecp256k1 implements the Blind signature scheme explained at
|
|
// "New Blind Signature Schemes Based on the (Elliptic Curve) Discrete
|
|
// Logarithm Problem", by Hamid Mala & Nafiseh Nezhadansari
|
|
// https://sci-hub.st/10.1109/ICCKE.2013.6682844
|
|
//
|
|
// LICENSE can be found at https://github.com/arnaucube/go-blindsecp256k1/blob/master/LICENSE
|
|
//
|
|
package blindsecp256k1
|
|
|
|
// WARNING: WIP code
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto/ecdsa"
|
|
"crypto/rand"
|
|
"fmt"
|
|
"math/big"
|
|
|
|
"github.com/ethereum/go-ethereum/crypto"
|
|
"github.com/ethereum/go-ethereum/crypto/secp256k1"
|
|
)
|
|
|
|
var (
|
|
s256 *secp256k1.BitCurve = secp256k1.S256()
|
|
zero *big.Int = big.NewInt(0)
|
|
|
|
// B (from y^2 = x^3 + B)
|
|
B *big.Int = s256.B
|
|
|
|
// P represents the secp256k1 finite field
|
|
P *big.Int = s256.P
|
|
|
|
// G represents the base point of secp256k1
|
|
G *Point = &Point{
|
|
X: s256.Gx,
|
|
Y: s256.Gy,
|
|
}
|
|
|
|
// N represents the order of G of secp256k1
|
|
N *big.Int = s256.N
|
|
)
|
|
|
|
// Point represents a point on the secp256k1 curve
|
|
type Point struct {
|
|
X *big.Int
|
|
Y *big.Int
|
|
}
|
|
|
|
// Add performs the Point addition
|
|
func (p *Point) Add(q *Point) *Point {
|
|
x, y := s256.Add(p.X, p.Y, q.X, q.Y)
|
|
return &Point{
|
|
X: x,
|
|
Y: y,
|
|
}
|
|
}
|
|
|
|
// Mul performs the Point scalar multiplication
|
|
func (p *Point) Mul(scalar *big.Int) *Point {
|
|
x, y := s256.ScalarMult(p.X, p.Y, scalar.Bytes())
|
|
return &Point{
|
|
X: x,
|
|
Y: y,
|
|
}
|
|
}
|
|
|
|
func (p *Point) isValid() error {
|
|
if !s256.IsOnCurve(p.X, p.Y) {
|
|
return fmt.Errorf("Point is not on secp256k1")
|
|
}
|
|
|
|
if bytes.Equal(p.X.Bytes(), zero.Bytes()) &&
|
|
bytes.Equal(p.Y.Bytes(), zero.Bytes()) {
|
|
return fmt.Errorf("Point (%s, %s) can not be (0, 0)",
|
|
p.X.String(), p.Y.String())
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Compress packs a Point to a byte array of 33 bytes, encoded in
|
|
// little-endian.
|
|
func (p *Point) Compress() [33]byte {
|
|
xBytes := p.X.Bytes()
|
|
odd := byte(0)
|
|
if isOdd(p.Y) {
|
|
odd = byte(1)
|
|
}
|
|
var b [33]byte
|
|
copy(b[32-len(xBytes):32], xBytes)
|
|
b[32] = odd
|
|
return b
|
|
}
|
|
|
|
func isOdd(b *big.Int) bool {
|
|
return b.Bit(0) != 0
|
|
}
|
|
|
|
// DecompressPoint unpacks a Point from the given byte array of 33 bytes
|
|
// https://bitcointalk.org/index.php?topic=162805.msg1712294#msg1712294
|
|
func DecompressPoint(b [33]byte) (*Point, error) {
|
|
x := new(big.Int).SetBytes(b[:32])
|
|
var odd bool
|
|
if b[32] == byte(1) {
|
|
odd = true
|
|
}
|
|
|
|
// secp256k1: y2 = x3+ ax2 + b (where A==0, B==7)
|
|
|
|
// compute x^3 + B mod p
|
|
x3 := new(big.Int).Mul(x, x)
|
|
x3 = new(big.Int).Mul(x3, x)
|
|
// x3 := new(big.Int).Exp(x, big.NewInt(3), nil)
|
|
x3 = new(big.Int).Add(x3, B)
|
|
x3 = new(big.Int).Mod(x3, P)
|
|
|
|
// sqrt mod p of x^3 + B
|
|
y := new(big.Int).ModSqrt(x3, P)
|
|
if y == nil {
|
|
return nil, fmt.Errorf("not sqrt mod of x^3")
|
|
}
|
|
if odd != isOdd(y) {
|
|
y = new(big.Int).Sub(P, y)
|
|
// TODO if needed Mod
|
|
}
|
|
|
|
// check that y is a square root of x^3 + B
|
|
y2 := new(big.Int).Mul(y, y)
|
|
y2 = new(big.Int).Mod(y2, P)
|
|
if !bytes.Equal(y2.Bytes(), x3.Bytes()) {
|
|
return nil, fmt.Errorf("invalid square root")
|
|
}
|
|
|
|
if odd != isOdd(y) {
|
|
return nil, fmt.Errorf("odd does not match oddness")
|
|
}
|
|
|
|
p := &Point{X: x, Y: y}
|
|
return p, p.isValid()
|
|
}
|
|
|
|
// WIP
|
|
func newRand() (*big.Int, error) {
|
|
pk, err := ecdsa.GenerateKey(s256, rand.Reader)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return pk.D, nil
|
|
}
|
|
|
|
// PrivateKey represents the signer's private key
|
|
type PrivateKey big.Int
|
|
|
|
// PublicKey represents the signer's public key
|
|
type PublicKey Point
|
|
|
|
// NewPrivateKey returns a new random private key
|
|
func NewPrivateKey() (*PrivateKey, error) {
|
|
k, err := newRand()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if err := checkBigIntSize(k); err != nil {
|
|
return nil, fmt.Errorf("k error: %s", err)
|
|
}
|
|
sk := PrivateKey(*k)
|
|
return &sk, nil
|
|
}
|
|
|
|
// BigInt returns a *big.Int representation of the PrivateKey
|
|
func (sk *PrivateKey) BigInt() *big.Int {
|
|
return (*big.Int)(sk)
|
|
}
|
|
|
|
// Public returns the PublicKey from the PrivateKey
|
|
func (sk *PrivateKey) Public() *PublicKey {
|
|
q := G.Mul(sk.BigInt())
|
|
pk := PublicKey(*q)
|
|
return &pk
|
|
}
|
|
|
|
// Point returns a *Point representation of the PublicKey
|
|
func (pk *PublicKey) Point() *Point {
|
|
return (*Point)(pk)
|
|
}
|
|
|
|
// NewRequestParameters returns a new random k (secret) & R (public) parameters
|
|
func NewRequestParameters() (*big.Int, *Point, error) {
|
|
k, err := newRand()
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
// k, R = kG
|
|
return k, G.Mul(k), nil
|
|
}
|
|
|
|
func checkBigIntSize(b *big.Int) error {
|
|
// check b.Bytes()==32, as go returns big-endian representation of the
|
|
// bigint, so if length is not 32 we have a smaller value than expected
|
|
// if len(b.Bytes()) != 32 { //nolint:gomnd
|
|
// return fmt.Errorf("invalid length, need 32 bytes")
|
|
// }
|
|
return nil
|
|
}
|
|
|
|
// BlindSign performs the blind signature on the given mBlinded using the
|
|
// PrivateKey and the secret k values.
|
|
func (sk *PrivateKey) BlindSign(mBlinded *big.Int, k *big.Int) (*big.Int, error) {
|
|
// TODO add pending checks
|
|
if mBlinded.Cmp(N) != -1 {
|
|
return nil, fmt.Errorf("mBlinded not inside the finite field")
|
|
}
|
|
if bytes.Equal(mBlinded.Bytes(), big.NewInt(0).Bytes()) {
|
|
return nil, fmt.Errorf("mBlinded can not be 0")
|
|
}
|
|
if err := checkBigIntSize(mBlinded); err != nil {
|
|
return nil, fmt.Errorf("mBlinded error: %s", err)
|
|
}
|
|
if err := checkBigIntSize(k); err != nil {
|
|
return nil, fmt.Errorf("k error: %s", err)
|
|
}
|
|
|
|
// s' = dm' + k
|
|
sBlind := new(big.Int).Add(
|
|
new(big.Int).Mul(sk.BigInt(), mBlinded),
|
|
k)
|
|
sBlind = new(big.Int).Mod(sBlind, N)
|
|
return sBlind, nil
|
|
}
|
|
|
|
// UserSecretData contains the secret values from the User (a, b) and the
|
|
// public F
|
|
type UserSecretData struct {
|
|
A *big.Int
|
|
B *big.Int
|
|
|
|
F *Point // public (in the paper is named R)
|
|
}
|
|
|
|
// Blind performs the blinding operation on m using signerR parameter
|
|
func Blind(m *big.Int, signerR *Point) (*big.Int, *UserSecretData, error) {
|
|
if err := signerR.isValid(); err != nil {
|
|
return nil, nil, fmt.Errorf("signerR %s", err)
|
|
}
|
|
|
|
var err error
|
|
u := &UserSecretData{}
|
|
u.A, err = newRand()
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
u.B, err = newRand()
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
// (R) F = aR' + bG
|
|
aR := signerR.Mul(u.A)
|
|
bG := G.Mul(u.B)
|
|
u.F = aR.Add(bG)
|
|
|
|
if err := u.F.isValid(); err != nil {
|
|
return nil, nil, fmt.Errorf("u.F %s", err)
|
|
}
|
|
|
|
rx := new(big.Int).Mod(u.F.X, N)
|
|
|
|
// m' = a^-1 rx h(m)
|
|
ainv := new(big.Int).ModInverse(u.A, N)
|
|
ainvrx := new(big.Int).Mul(ainv, rx)
|
|
hBytes := crypto.Keccak256(m.Bytes())
|
|
h := new(big.Int).SetBytes(hBytes)
|
|
mBlinded := new(big.Int).Mul(ainvrx, h)
|
|
mBlinded = new(big.Int).Mod(mBlinded, N)
|
|
|
|
return mBlinded, u, nil
|
|
}
|
|
|
|
// Signature contains the signature values S & F
|
|
type Signature struct {
|
|
S *big.Int
|
|
F *Point
|
|
}
|
|
|
|
// Compress packs a Signature to a byte array of 65 bytes, encoded in
|
|
// little-endian.
|
|
func (s *Signature) Compress() [65]byte {
|
|
var b [65]byte
|
|
sBytes := s.S.Bytes()
|
|
fBytes := s.F.Compress()
|
|
copy(b[:32], swapEndianness(sBytes))
|
|
copy(b[32:], fBytes[:])
|
|
return b
|
|
}
|
|
|
|
// DecompressSignature unpacks a Signature from the given byte array of 65 bytes
|
|
func DecompressSignature(b [65]byte) (*Signature, error) {
|
|
s := new(big.Int).SetBytes(swapEndianness(b[:32]))
|
|
var fBytes [33]byte
|
|
copy(fBytes[:], b[32:])
|
|
f, err := DecompressPoint(fBytes)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
sig := &Signature{S: s, F: f}
|
|
return sig, nil
|
|
}
|
|
|
|
// Unblind performs the unblinding operation of the blinded signature for the
|
|
// given the UserSecretData
|
|
func Unblind(sBlind *big.Int, u *UserSecretData) *Signature {
|
|
// s = a s' + b
|
|
as := new(big.Int).Mul(u.A, sBlind)
|
|
s := new(big.Int).Add(as, u.B)
|
|
s = new(big.Int).Mod(s, N)
|
|
|
|
return &Signature{
|
|
S: s,
|
|
F: u.F,
|
|
}
|
|
}
|
|
|
|
// Verify checks the signature of the message m for the given PublicKey
|
|
func Verify(m *big.Int, s *Signature, q *PublicKey) bool {
|
|
// TODO add pending checks
|
|
if err := s.F.isValid(); err != nil {
|
|
return false
|
|
}
|
|
if err := q.Point().isValid(); err != nil {
|
|
return false
|
|
}
|
|
|
|
sG := G.Mul(s.S) // sG
|
|
|
|
hBytes := crypto.Keccak256(m.Bytes())
|
|
h := new(big.Int).SetBytes(hBytes)
|
|
|
|
rx := new(big.Int).Mod(s.F.X, N)
|
|
rxh := new(big.Int).Mul(rx, h)
|
|
// do mod, as go-ethereum/crypto/secp256k1 can not handle scalars > 256 bits
|
|
rxhMod := new(big.Int).Mod(rxh, N)
|
|
// rxhG := G.Mul(rxh) // originally the paper uses G
|
|
rxhG := q.Point().Mul(rxhMod)
|
|
|
|
right := s.F.Add(rxhG)
|
|
|
|
// check sG == R + rx h(m) Q (where R in this code is F)
|
|
if bytes.Equal(sG.X.Bytes(), right.X.Bytes()) &&
|
|
bytes.Equal(sG.Y.Bytes(), right.Y.Bytes()) {
|
|
return true
|
|
}
|
|
return false
|
|
}
|