You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

352 lines
8.2 KiB

// Package blindsecp256k1 implements the Blind signature scheme explained at
// "New Blind Signature Schemes Based on the (Elliptic Curve) Discrete
// Logarithm Problem", by Hamid Mala & Nafiseh Nezhadansari
// https://sci-hub.st/10.1109/ICCKE.2013.6682844
//
// LICENSE can be found at https://github.com/arnaucube/go-blindsecp256k1/blob/master/LICENSE
//
package blindsecp256k1
// WARNING: WIP code
import (
"bytes"
"crypto/ecdsa"
"crypto/rand"
"fmt"
"math/big"
"github.com/ethereum/go-ethereum/crypto"
"github.com/ethereum/go-ethereum/crypto/secp256k1"
)
var (
s256 *secp256k1.BitCurve = secp256k1.S256()
zero *big.Int = big.NewInt(0)
// B (from y^2 = x^3 + B)
B *big.Int = s256.B
// P represents the secp256k1 finite field
P *big.Int = s256.P
// G represents the base point of secp256k1
G *Point = &Point{
X: s256.Gx,
Y: s256.Gy,
}
// N represents the order of G of secp256k1
N *big.Int = s256.N
)
// Point represents a point on the secp256k1 curve
type Point struct {
X *big.Int
Y *big.Int
}
// Add performs the Point addition
func (p *Point) Add(q *Point) *Point {
x, y := s256.Add(p.X, p.Y, q.X, q.Y)
return &Point{
X: x,
Y: y,
}
}
// Mul performs the Point scalar multiplication
func (p *Point) Mul(scalar *big.Int) *Point {
x, y := s256.ScalarMult(p.X, p.Y, scalar.Bytes())
return &Point{
X: x,
Y: y,
}
}
func (p *Point) isValid() error {
if !s256.IsOnCurve(p.X, p.Y) {
return fmt.Errorf("Point is not on secp256k1")
}
if bytes.Equal(p.X.Bytes(), zero.Bytes()) &&
bytes.Equal(p.Y.Bytes(), zero.Bytes()) {
return fmt.Errorf("Point (%s, %s) can not be (0, 0)",
p.X.String(), p.Y.String())
}
return nil
}
// Compress packs a Point to a byte array of 33 bytes, encoded in
// little-endian.
func (p *Point) Compress() [33]byte {
xBytes := p.X.Bytes()
odd := byte(0)
if isOdd(p.Y) {
odd = byte(1)
}
var b [33]byte
copy(b[32-len(xBytes):32], xBytes)
b[32] = odd
return b
}
func isOdd(b *big.Int) bool {
return b.Bit(0) != 0
}
// DecompressPoint unpacks a Point from the given byte array of 33 bytes
// https://bitcointalk.org/index.php?topic=162805.msg1712294#msg1712294
func DecompressPoint(b [33]byte) (*Point, error) {
x := new(big.Int).SetBytes(b[:32])
var odd bool
if b[32] == byte(1) {
odd = true
}
// secp256k1: y2 = x3+ ax2 + b (where A==0, B==7)
// compute x^3 + B mod p
x3 := new(big.Int).Mul(x, x)
x3 = new(big.Int).Mul(x3, x)
// x3 := new(big.Int).Exp(x, big.NewInt(3), nil)
x3 = new(big.Int).Add(x3, B)
x3 = new(big.Int).Mod(x3, P)
// sqrt mod p of x^3 + B
y := new(big.Int).ModSqrt(x3, P)
if y == nil {
return nil, fmt.Errorf("not sqrt mod of x^3")
}
if odd != isOdd(y) {
y = new(big.Int).Sub(P, y)
// TODO if needed Mod
}
// check that y is a square root of x^3 + B
y2 := new(big.Int).Mul(y, y)
y2 = new(big.Int).Mod(y2, P)
if !bytes.Equal(y2.Bytes(), x3.Bytes()) {
return nil, fmt.Errorf("invalid square root")
}
if odd != isOdd(y) {
return nil, fmt.Errorf("odd does not match oddness")
}
p := &Point{X: x, Y: y}
return p, p.isValid()
}
// WIP
func newRand() (*big.Int, error) {
pk, err := ecdsa.GenerateKey(s256, rand.Reader)
if err != nil {
return nil, err
}
return pk.D, nil
}
// PrivateKey represents the signer's private key
type PrivateKey big.Int
// PublicKey represents the signer's public key
type PublicKey Point
// NewPrivateKey returns a new random private key
func NewPrivateKey() (*PrivateKey, error) {
k, err := newRand()
if err != nil {
return nil, err
}
if err := checkBigIntSize(k); err != nil {
return nil, fmt.Errorf("k error: %s", err)
}
sk := PrivateKey(*k)
return &sk, nil
}
// BigInt returns a *big.Int representation of the PrivateKey
func (sk *PrivateKey) BigInt() *big.Int {
return (*big.Int)(sk)
}
// Public returns the PublicKey from the PrivateKey
func (sk *PrivateKey) Public() *PublicKey {
q := G.Mul(sk.BigInt())
pk := PublicKey(*q)
return &pk
}
// Point returns a *Point representation of the PublicKey
func (pk *PublicKey) Point() *Point {
return (*Point)(pk)
}
// NewRequestParameters returns a new random k (secret) & R (public) parameters
func NewRequestParameters() (*big.Int, *Point, error) {
k, err := newRand()
if err != nil {
return nil, nil, err
}
// k, R = kG
return k, G.Mul(k), nil
}
func checkBigIntSize(b *big.Int) error {
// check b.Bytes()==32, as go returns big-endian representation of the
// bigint, so if length is not 32 we have a smaller value than expected
// if len(b.Bytes()) != 32 { //nolint:gomnd
// return fmt.Errorf("invalid length, need 32 bytes")
// }
return nil
}
// BlindSign performs the blind signature on the given mBlinded using the
// PrivateKey and the secret k values.
func (sk *PrivateKey) BlindSign(mBlinded *big.Int, k *big.Int) (*big.Int, error) {
// TODO add pending checks
if mBlinded.Cmp(N) != -1 {
return nil, fmt.Errorf("mBlinded not inside the finite field")
}
if bytes.Equal(mBlinded.Bytes(), big.NewInt(0).Bytes()) {
return nil, fmt.Errorf("mBlinded can not be 0")
}
if err := checkBigIntSize(mBlinded); err != nil {
return nil, fmt.Errorf("mBlinded error: %s", err)
}
if err := checkBigIntSize(k); err != nil {
return nil, fmt.Errorf("k error: %s", err)
}
// s' = dm' + k
sBlind := new(big.Int).Add(
new(big.Int).Mul(sk.BigInt(), mBlinded),
k)
sBlind = new(big.Int).Mod(sBlind, N)
return sBlind, nil
}
// UserSecretData contains the secret values from the User (a, b) and the
// public F
type UserSecretData struct {
A *big.Int
B *big.Int
F *Point // public (in the paper is named R)
}
// Blind performs the blinding operation on m using signerR parameter
func Blind(m *big.Int, signerR *Point) (*big.Int, *UserSecretData, error) {
if err := signerR.isValid(); err != nil {
return nil, nil, fmt.Errorf("signerR %s", err)
}
var err error
u := &UserSecretData{}
u.A, err = newRand()
if err != nil {
return nil, nil, err
}
u.B, err = newRand()
if err != nil {
return nil, nil, err
}
// (R) F = aR' + bG
aR := signerR.Mul(u.A)
bG := G.Mul(u.B)
u.F = aR.Add(bG)
if err := u.F.isValid(); err != nil {
return nil, nil, fmt.Errorf("u.F %s", err)
}
rx := new(big.Int).Mod(u.F.X, N)
// m' = a^-1 rx h(m)
ainv := new(big.Int).ModInverse(u.A, N)
ainvrx := new(big.Int).Mul(ainv, rx)
hBytes := crypto.Keccak256(m.Bytes())
h := new(big.Int).SetBytes(hBytes)
mBlinded := new(big.Int).Mul(ainvrx, h)
mBlinded = new(big.Int).Mod(mBlinded, N)
return mBlinded, u, nil
}
// Signature contains the signature values S & F
type Signature struct {
S *big.Int
F *Point
}
// Compress packs a Signature to a byte array of 65 bytes, encoded in
// little-endian.
func (s *Signature) Compress() [65]byte {
var b [65]byte
sBytes := s.S.Bytes()
fBytes := s.F.Compress()
copy(b[:32], swapEndianness(sBytes))
copy(b[32:], fBytes[:])
return b
}
// DecompressSignature unpacks a Signature from the given byte array of 65 bytes
func DecompressSignature(b [65]byte) (*Signature, error) {
s := new(big.Int).SetBytes(swapEndianness(b[:32]))
var fBytes [33]byte
copy(fBytes[:], b[32:])
f, err := DecompressPoint(fBytes)
if err != nil {
return nil, err
}
sig := &Signature{S: s, F: f}
return sig, nil
}
// Unblind performs the unblinding operation of the blinded signature for the
// given the UserSecretData
func Unblind(sBlind *big.Int, u *UserSecretData) *Signature {
// s = a s' + b
as := new(big.Int).Mul(u.A, sBlind)
s := new(big.Int).Add(as, u.B)
s = new(big.Int).Mod(s, N)
return &Signature{
S: s,
F: u.F,
}
}
// Verify checks the signature of the message m for the given PublicKey
func Verify(m *big.Int, s *Signature, q *PublicKey) bool {
// TODO add pending checks
if err := s.F.isValid(); err != nil {
return false
}
if err := q.Point().isValid(); err != nil {
return false
}
sG := G.Mul(s.S) // sG
hBytes := crypto.Keccak256(m.Bytes())
h := new(big.Int).SetBytes(hBytes)
rx := new(big.Int).Mod(s.F.X, N)
rxh := new(big.Int).Mul(rx, h)
// do mod, as go-ethereum/crypto/secp256k1 can not handle scalars > 256 bits
rxhMod := new(big.Int).Mod(rxh, N)
// rxhG := G.Mul(rxh) // originally the paper uses G
rxhG := q.Point().Mul(rxhMod)
right := s.F.Add(rxhG)
// check sG == R + rx h(m) Q (where R in this code is F)
if bytes.Equal(sG.X.Bytes(), right.X.Bytes()) &&
bytes.Equal(sG.Y.Bytes(), right.Y.Bytes()) {
return true
}
return false
}