// Package blindsecp256k1 implements the Blind signature scheme explained at
|
|
// "New Blind Signature Schemes Based on the (Elliptic Curve) Discrete
|
|
// Logarithm Problem", by Hamid Mala & Nafiseh Nezhadansari
|
|
// https://sci-hub.do/10.1109/ICCKE.2013.6682844
|
|
//
|
|
// LICENSE can be found at https://github.com/arnaucube/go-blindsecp256k1/blob/master/LICENSE
|
|
//
|
|
package blindsecp256k1
|
|
|
|
// WARNING: WIP code
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto/rand"
|
|
"fmt"
|
|
"math/big"
|
|
|
|
"github.com/btcsuite/btcd/btcec"
|
|
"github.com/ethereum/go-ethereum/crypto"
|
|
)
|
|
|
|
var (
|
|
// G represents the base point of secp256k1
|
|
G *Point = &Point{
|
|
X: btcec.S256().Gx,
|
|
Y: btcec.S256().Gy,
|
|
}
|
|
|
|
// N represents the order of G of secp256k1
|
|
N *big.Int = btcec.S256().N
|
|
|
|
// B (from y^2 = x^3 + B)
|
|
B *big.Int = btcec.S256().B
|
|
|
|
// Q = (P+1)/4
|
|
Q = new(big.Int).Div(new(big.Int).Add(btcec.S256().P,
|
|
big.NewInt(1)), big.NewInt(4))
|
|
)
|
|
|
|
// Point represents a point on the secp256k1 curve
|
|
type Point struct {
|
|
X *big.Int
|
|
Y *big.Int
|
|
}
|
|
|
|
// Add performs the Point addition
|
|
func (p *Point) Add(q *Point) *Point {
|
|
x, y := btcec.S256().Add(p.X, p.Y, q.X, q.Y)
|
|
return &Point{
|
|
X: x,
|
|
Y: y,
|
|
}
|
|
}
|
|
|
|
// Mul performs the Point scalar multiplication
|
|
func (p *Point) Mul(scalar *big.Int) *Point {
|
|
x, y := btcec.S256().ScalarMult(p.X, p.Y, scalar.Bytes())
|
|
return &Point{
|
|
X: x,
|
|
Y: y,
|
|
}
|
|
}
|
|
|
|
func (p *Point) Compress() [33]byte {
|
|
xBytes := p.X.Bytes()
|
|
sign := byte(0)
|
|
if isOdd(p.Y) {
|
|
sign = byte(1)
|
|
}
|
|
var b [33]byte
|
|
copy(b[32-len(xBytes):32], xBytes)
|
|
b[32] = sign
|
|
return b
|
|
}
|
|
|
|
func isOdd(b *big.Int) bool {
|
|
return b.Bit(0) != 0
|
|
}
|
|
|
|
func squareMul(r, x *big.Int, bit bool) *big.Int {
|
|
// r = new(big.Int).Mul(r, r) // r^2
|
|
r = new(big.Int).Exp(r, big.NewInt(2), N)
|
|
if bit {
|
|
r = new(big.Int).Mul(r, x)
|
|
}
|
|
return new(big.Int).Mod(r, N)
|
|
}
|
|
|
|
// https://en.wikipedia.org/wiki/Exponentiation_by_squaring
|
|
func sqrtQ(x *big.Int) *big.Int {
|
|
// xBytes := x.Bytes()
|
|
qBytes := Q.Bytes()
|
|
r := big.NewInt(1)
|
|
// fmt.Println(hex.EncodeToString(qBytes))
|
|
for _, b := range qBytes {
|
|
// fmt.Printf("%d, %x %d\n", i, b, r)
|
|
// fmt.Printf("%x %s\n", b, r.String())
|
|
switch b {
|
|
// Most common case, where all 8 bits are set.
|
|
case 0xff:
|
|
r = squareMul(r, x, true)
|
|
r = squareMul(r, x, true)
|
|
r = squareMul(r, x, true)
|
|
r = squareMul(r, x, true)
|
|
r = squareMul(r, x, true)
|
|
r = squareMul(r, x, true)
|
|
r = squareMul(r, x, true)
|
|
r = squareMul(r, x, true)
|
|
// fmt.Printf("%x %s\n", b, r.String())
|
|
|
|
// First byte of Q (0x3f), where all but the top two bits are
|
|
// set. Note that this case only applies six operations, since
|
|
// the highest bit of Q resides in bit six of the first byte. We
|
|
// ignore the first two bits, since squaring for these bits will
|
|
// result in an invalid result. We forgo squaring f before the
|
|
// first multiply, since 1^2 = 1.
|
|
case 0x3f:
|
|
r = new(big.Int).Mul(r, x)
|
|
r = squareMul(r, x, true)
|
|
r = squareMul(r, x, true)
|
|
r = squareMul(r, x, true)
|
|
r = squareMul(r, x, true)
|
|
r = squareMul(r, x, true)
|
|
|
|
// Byte 28 of Q (0xbf), where only bit 7 is unset.
|
|
case 0xbf:
|
|
r = squareMul(r, x, true)
|
|
r = squareMul(r, x, false)
|
|
r = squareMul(r, x, true)
|
|
r = squareMul(r, x, true)
|
|
r = squareMul(r, x, true)
|
|
r = squareMul(r, x, true)
|
|
r = squareMul(r, x, true)
|
|
r = squareMul(r, x, true)
|
|
|
|
// Byte 31 of Q (0x0c), where only bits 3 and 4 are set.
|
|
default:
|
|
r = squareMul(r, x, false)
|
|
r = squareMul(r, x, false)
|
|
r = squareMul(r, x, false)
|
|
r = squareMul(r, x, false)
|
|
r = squareMul(r, x, true)
|
|
r = squareMul(r, x, true)
|
|
r = squareMul(r, x, false)
|
|
r = squareMul(r, x, false)
|
|
}
|
|
}
|
|
return r
|
|
}
|
|
|
|
// https://bitcointalk.org/index.php?topic=162805.msg1712294#msg1712294
|
|
// func (p *Point) Decompress(b [33]byte) error {
|
|
func Decompress(b [33]byte) (*Point, error) {
|
|
fmt.Println(b)
|
|
x := new(big.Int).SetBytes(b[:32])
|
|
fmt.Println(x)
|
|
var sign bool
|
|
if b[32] == byte(1) {
|
|
sign = true
|
|
}
|
|
|
|
// y2 = x3+ ax2 + b (where A==0, B==7)
|
|
|
|
// compute x^3 + B mod p
|
|
x3 := new(big.Int).Mul(x, x)
|
|
x3 = new(big.Int).Mul(x3, x)
|
|
// x3 := new(big.Int).Exp(x, big.NewInt(3), N)
|
|
x3 = new(big.Int).Add(x3, B)
|
|
x3 = new(big.Int).Mod(x3, N)
|
|
|
|
// sqrt mod p of x^3 + B
|
|
fmt.Println("x3", x3)
|
|
y := new(big.Int).ModSqrt(x3, N)
|
|
// y := sqrtQ(x3)
|
|
if y == nil {
|
|
return nil, fmt.Errorf("not sqrt mod of x^3")
|
|
}
|
|
fmt.Println("y", y)
|
|
fmt.Println("y", new(big.Int).Sub(N, y))
|
|
fmt.Println("y", new(big.Int).Mod(new(big.Int).Neg(y), N))
|
|
if sign != isOdd(y) {
|
|
y = new(big.Int).Sub(N, y)
|
|
// TODO check if needed Mod
|
|
}
|
|
|
|
// check that y is a square root of x^3 + B
|
|
y2 := new(big.Int).Mul(y, y)
|
|
y2 = new(big.Int).Mod(y2, N)
|
|
if !bytes.Equal(y2.Bytes(), x3.Bytes()) {
|
|
return nil, fmt.Errorf("invalid square root")
|
|
}
|
|
|
|
if sign != isOdd(y) {
|
|
return nil, fmt.Errorf("sign does not match oddness")
|
|
}
|
|
|
|
p := &Point{X: x, Y: y}
|
|
// p = &Point{}
|
|
// p.X = x
|
|
// p.Y = y
|
|
// fmt.Println("I", p.X, p.Y)
|
|
return p, nil
|
|
}
|
|
|
|
// WIP
|
|
func newRand() *big.Int {
|
|
var b [32]byte
|
|
_, err := rand.Read(b[:])
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
bi := new(big.Int).SetBytes(b[:])
|
|
return new(big.Int).Mod(bi, N)
|
|
}
|
|
|
|
// PrivateKey represents the signer's private key
|
|
type PrivateKey big.Int
|
|
|
|
// PublicKey represents the signer's public key
|
|
type PublicKey Point
|
|
|
|
// NewPrivateKey returns a new random private key
|
|
func NewPrivateKey() *PrivateKey {
|
|
k := newRand()
|
|
sk := PrivateKey(*k)
|
|
return &sk
|
|
}
|
|
|
|
// BigInt returns a *big.Int representation of the PrivateKey
|
|
func (sk *PrivateKey) BigInt() *big.Int {
|
|
return (*big.Int)(sk)
|
|
}
|
|
|
|
// Public returns the PublicKey from the PrivateKey
|
|
func (sk *PrivateKey) Public() *PublicKey {
|
|
Q := G.Mul(sk.BigInt())
|
|
pk := PublicKey(*Q)
|
|
return &pk
|
|
}
|
|
|
|
// Point returns a *Point representation of the PublicKey
|
|
func (pk *PublicKey) Point() *Point {
|
|
return (*Point)(pk)
|
|
}
|
|
|
|
// NewRequestParameters returns a new random k (secret) & R (public) parameters
|
|
func NewRequestParameters() (*big.Int, *Point) {
|
|
k := newRand()
|
|
return k, G.Mul(k) // R = kG
|
|
}
|
|
|
|
// BlindSign performs the blind signature on the given mBlinded using the
|
|
// PrivateKey and the secret k values
|
|
func (sk *PrivateKey) BlindSign(mBlinded *big.Int, k *big.Int) *big.Int {
|
|
// TODO add pending checks
|
|
// s' = dm' + k
|
|
sBlind := new(big.Int).Add(
|
|
new(big.Int).Mul(sk.BigInt(), mBlinded),
|
|
k)
|
|
return sBlind
|
|
}
|
|
|
|
// UserSecretData contains the secret values from the User (a, b, c) and the
|
|
// public F
|
|
type UserSecretData struct {
|
|
A *big.Int
|
|
B *big.Int
|
|
|
|
F *Point // public (in the paper is R)
|
|
}
|
|
|
|
// Blind performs the blinding operation on m using signerR parameter
|
|
func Blind(m *big.Int, signerR *Point) (*big.Int, *UserSecretData) {
|
|
u := &UserSecretData{}
|
|
u.A = newRand()
|
|
u.B = newRand()
|
|
|
|
// (R) F = aR' + bG
|
|
aR := signerR.Mul(u.A)
|
|
bG := G.Mul(u.B)
|
|
u.F = aR.Add(bG)
|
|
|
|
// TODO check that F != O (point at infinity)
|
|
|
|
rx := new(big.Int).Mod(u.F.X, N)
|
|
|
|
// m' = a^-1 rx h(m)
|
|
ainv := new(big.Int).ModInverse(u.A, N)
|
|
ainvrx := new(big.Int).Mul(ainv, rx)
|
|
hBytes := crypto.Keccak256(m.Bytes())
|
|
h := new(big.Int).SetBytes(hBytes)
|
|
mBlinded := new(big.Int).Mul(ainvrx, h)
|
|
|
|
return mBlinded, u
|
|
}
|
|
|
|
// Signature contains the signature values S & F
|
|
type Signature struct {
|
|
S *big.Int
|
|
F *Point
|
|
}
|
|
|
|
// Unblind performs the unblinding operation of the blinded signature for the
|
|
// given message m and the UserSecretData
|
|
func Unblind(sBlind, m *big.Int, u *UserSecretData) *Signature {
|
|
// s = a s' + b
|
|
as := new(big.Int).Mul(u.A, sBlind)
|
|
s := new(big.Int).Add(as, u.B)
|
|
|
|
return &Signature{
|
|
S: s,
|
|
F: u.F,
|
|
}
|
|
}
|
|
|
|
// Verify checks the signature of the message m for the given PublicKey
|
|
func Verify(m *big.Int, s *Signature, q *PublicKey) bool {
|
|
// TODO add pending checks
|
|
|
|
sG := G.Mul(s.S) // sG
|
|
|
|
hBytes := crypto.Keccak256(m.Bytes())
|
|
h := new(big.Int).SetBytes(hBytes)
|
|
|
|
rx := new(big.Int).Mod(s.F.X, N)
|
|
rxh := new(big.Int).Mul(rx, h)
|
|
// rxhG := G.Mul(rxh) // originally the paper uses G
|
|
rxhG := q.Point().Mul(rxh)
|
|
|
|
right := s.F.Add(rxhG)
|
|
|
|
// check sG == R + rx h(m) G (where R in this code is F)
|
|
if bytes.Equal(sG.X.Bytes(), right.X.Bytes()) &&
|
|
bytes.Equal(sG.Y.Bytes(), right.Y.Bytes()) {
|
|
return true
|
|
}
|
|
return false
|
|
}
|