// Package blindsecp256k1v0 implements the Blind signature scheme explained at
|
|
// "An Efficient Blind Signature Scheme Based on the Elliptic Curve Discrete
|
|
// Logarithm Problem", by Morteza Nikooghadama & Ali Zakerolhosseini
|
|
// http://www.isecure-journal.com/article_39171_47f9ec605dd3918c2793565ec21fcd7a.pdf
|
|
//
|
|
// LICENSE can be found at https://github.com/arnaucube/go-blindsecp256k1/blob/master/LICENSE
|
|
//
|
|
package blindsecp256k1v0
|
|
|
|
// WARNING: WIP code
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto/rand"
|
|
"math/big"
|
|
|
|
"github.com/arnaucube/go-blindsecp256k1"
|
|
)
|
|
|
|
// WIP
|
|
func newRand() *big.Int {
|
|
var b [32]byte
|
|
_, err := rand.Read(b[:])
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
bi := new(big.Int).SetBytes(b[:])
|
|
return new(big.Int).Mod(bi, blindsecp256k1.N)
|
|
}
|
|
|
|
// PrivateKey represents the signer's private key
|
|
type PrivateKey big.Int
|
|
|
|
// NewPrivateKey returns a new random private key
|
|
func NewPrivateKey() *PrivateKey {
|
|
k := newRand()
|
|
sk := PrivateKey(*k)
|
|
return &sk
|
|
}
|
|
|
|
// BigInt returns a *big.Int representation of the PrivateKey
|
|
func (sk *PrivateKey) BigInt() *big.Int {
|
|
return (*big.Int)(sk)
|
|
}
|
|
|
|
// Public returns the PublicKey from the PrivateKey
|
|
func (sk *PrivateKey) Public() *blindsecp256k1.PublicKey {
|
|
Q := blindsecp256k1.G.Mul(sk.BigInt())
|
|
pk := blindsecp256k1.PublicKey(*Q)
|
|
return &pk
|
|
}
|
|
|
|
// NewRequestParameters returns a new random k (secret) & R (public) parameters
|
|
func NewRequestParameters() (*big.Int, *blindsecp256k1.Point) {
|
|
k := newRand()
|
|
return k, blindsecp256k1.G.Mul(k) // R = kG
|
|
}
|
|
|
|
// BlindSign performs the blind signature on the given mBlinded using
|
|
// SignerPrivateData values
|
|
func (sk *PrivateKey) BlindSign(mBlinded *big.Int, k *big.Int) *big.Int {
|
|
// TODO add pending checks
|
|
// s' = d(m') + k
|
|
sBlind := new(big.Int).Add(
|
|
new(big.Int).Mul(sk.BigInt(), mBlinded),
|
|
k)
|
|
return sBlind
|
|
}
|
|
|
|
// UserSecretData contains the secret values from the User (a, b, c) and the
|
|
// public F
|
|
type UserSecretData struct {
|
|
A *big.Int
|
|
B *big.Int
|
|
C *big.Int
|
|
|
|
F *blindsecp256k1.Point // public
|
|
}
|
|
|
|
// Blind performs the blinding operation on m using SignerPublicData parameters
|
|
func Blind(m *big.Int, signerPubK *blindsecp256k1.PublicKey,
|
|
signerR *blindsecp256k1.Point) (*big.Int, *UserSecretData) {
|
|
u := &UserSecretData{}
|
|
u.A = newRand()
|
|
u.B = newRand()
|
|
u.C = newRand()
|
|
binv := new(big.Int).ModInverse(u.B, blindsecp256k1.N)
|
|
|
|
// F = b^-1 R + a b^-1 Q + c G
|
|
bR := signerR.Mul(binv)
|
|
abinv := new(big.Int).Mul(u.A, binv)
|
|
abinv = new(big.Int).Mod(abinv, blindsecp256k1.N)
|
|
abQ := signerPubK.Point().Mul(abinv)
|
|
cG := blindsecp256k1.G.Mul(u.C)
|
|
u.F = bR.Add(abQ).Add(cG)
|
|
// TODO check F==O
|
|
|
|
r := new(big.Int).Mod(u.F.X, blindsecp256k1.N)
|
|
|
|
// m' = br(m)+a
|
|
br := new(big.Int).Mul(u.B, r)
|
|
brm := new(big.Int).Mul(br, m)
|
|
mBlinded := new(big.Int).Add(brm, u.A)
|
|
mBlinded = new(big.Int).Mod(mBlinded, blindsecp256k1.N)
|
|
return mBlinded, u
|
|
}
|
|
|
|
// Signature contains the signature values S & F
|
|
type Signature struct {
|
|
S *big.Int
|
|
F *blindsecp256k1.Point
|
|
}
|
|
|
|
// Unblind performs the unblinding operation of the blinded signature for the
|
|
// given and the UserSecretData
|
|
func Unblind(sBlind *big.Int, u *UserSecretData) *Signature {
|
|
// s = b^-1 s' + c
|
|
binv := new(big.Int).ModInverse(u.B, blindsecp256k1.N)
|
|
bs := new(big.Int).Mul(binv, sBlind)
|
|
s := new(big.Int).Add(bs, u.C)
|
|
s = new(big.Int).Mod(s, blindsecp256k1.N)
|
|
|
|
return &Signature{
|
|
S: s,
|
|
F: u.F,
|
|
}
|
|
}
|
|
|
|
// Verify checks the signature of the message m for the given PublicKey
|
|
func Verify(m *big.Int, signature *Signature, q *blindsecp256k1.PublicKey) bool {
|
|
// TODO add pending checks
|
|
sG := blindsecp256k1.G.Mul(signature.S) // sG
|
|
|
|
r := new(big.Int).Mod(signature.F.X, blindsecp256k1.N) // r = Fx mod N
|
|
rm := new(big.Int).Mul(r, m)
|
|
rm = new(big.Int).Mod(rm, blindsecp256k1.N)
|
|
rmQ := q.Point().Mul(rm)
|
|
rmQF := rmQ.Add(signature.F) // rmQ + F
|
|
|
|
// check sG == rmQ + F
|
|
if bytes.Equal(sG.X.Bytes(), rmQF.X.Bytes()) &&
|
|
bytes.Equal(sG.Y.Bytes(), rmQF.Y.Bytes()) {
|
|
return true
|
|
}
|
|
return false
|
|
}
|