|
|
package prover
import ( "crypto/rand" "math" "math/big" "sync"
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare" "github.com/iden3/go-circom-prover-verifier/types" "github.com/iden3/go-iden3-crypto/ff" "github.com/iden3/go-iden3-crypto/utils" )
// Proof is the data structure of the Groth16 zkSNARK proof
type Proof struct { A *bn256.G1 B *bn256.G2 C *bn256.G1 }
// Pk holds the data structure of the ProvingKey
type Pk struct { A []*bn256.G1 B2 []*bn256.G2 B1 []*bn256.G1 C []*bn256.G1 NVars int NPublic int VkAlpha1 *bn256.G1 VkDelta1 *bn256.G1 VkBeta1 *bn256.G1 VkBeta2 *bn256.G2 VkDelta2 *bn256.G2 HExps []*bn256.G1 DomainSize int PolsA []map[int]*big.Int PolsB []map[int]*big.Int PolsC []map[int]*big.Int }
// Witness contains the witness
type Witness []*big.Int
func randBigInt() (*big.Int, error) { maxbits := types.R.BitLen() b := make([]byte, (maxbits/8)-1) _, err := rand.Read(b) if err != nil { return nil, err } r := new(big.Int).SetBytes(b) rq := new(big.Int).Mod(r, types.R)
return rq, nil }
// GenerateProof generates the Groth16 zkSNARK proof
func GenerateProof(pk *types.Pk, w types.Witness) (*types.Proof, []*big.Int, error) { var proof types.Proof
r, err := randBigInt() if err != nil { return nil, nil, err } s, err := randBigInt() if err != nil { return nil, nil, err }
proof.A = new(bn256.G1).ScalarBaseMult(big.NewInt(0)) proof.B = new(bn256.G2).ScalarBaseMult(big.NewInt(0)) proof.C = new(bn256.G1).ScalarBaseMult(big.NewInt(0)) proofBG1 := new(bn256.G1).ScalarBaseMult(big.NewInt(0))
var waitGroup sync.WaitGroup waitGroup.Add(4) go func(wg *sync.WaitGroup) { for i := 0; i < pk.NVars; i++ { proof.A = new(bn256.G1).Add(proof.A, new(bn256.G1).ScalarMult(pk.A[i], w[i])) } wg.Done() }(&waitGroup) go func(wg *sync.WaitGroup) { for i := 0; i < pk.NVars; i++ { proof.B = new(bn256.G2).Add(proof.B, new(bn256.G2).ScalarMult(pk.B2[i], w[i])) } wg.Done() }(&waitGroup) go func(wg *sync.WaitGroup) { for i := 0; i < pk.NVars; i++ { proofBG1 = new(bn256.G1).Add(proofBG1, new(bn256.G1).ScalarMult(pk.B1[i], w[i])) } wg.Done() }(&waitGroup) go func(wg *sync.WaitGroup) { for i := pk.NPublic + 1; i < pk.NVars; i++ { proof.C = new(bn256.G1).Add(proof.C, new(bn256.G1).ScalarMult(pk.C[i], w[i])) } wg.Done() }(&waitGroup) waitGroup.Wait()
h := calculateH(pk, w)
var waitGroup2 sync.WaitGroup waitGroup2.Add(2) go func(wg *sync.WaitGroup) { proof.A = new(bn256.G1).Add(proof.A, pk.VkAlpha1) proof.A = new(bn256.G1).Add(proof.A, new(bn256.G1).ScalarMult(pk.VkDelta1, r))
proof.B = new(bn256.G2).Add(proof.B, pk.VkBeta2) proof.B = new(bn256.G2).Add(proof.B, new(bn256.G2).ScalarMult(pk.VkDelta2, s))
proofBG1 = new(bn256.G1).Add(proofBG1, pk.VkBeta1) proofBG1 = new(bn256.G1).Add(proofBG1, new(bn256.G1).ScalarMult(pk.VkDelta1, s)) wg.Done() }(&waitGroup2) go func(wg *sync.WaitGroup) { for i := 0; i < len(h); i++ { proof.C = new(bn256.G1).Add(proof.C, new(bn256.G1).ScalarMult(pk.HExps[i], h[i])) } wg.Done() }(&waitGroup2) waitGroup2.Wait()
proof.C = new(bn256.G1).Add(proof.C, new(bn256.G1).ScalarMult(proof.A, s)) proof.C = new(bn256.G1).Add(proof.C, new(bn256.G1).ScalarMult(proofBG1, r)) rsneg := new(big.Int).Mod(new(big.Int).Neg(new(big.Int).Mul(r, s)), types.R) // fAdd & fMul
proof.C = new(bn256.G1).Add(proof.C, new(bn256.G1).ScalarMult(pk.VkDelta1, rsneg))
pubSignals := w[1 : pk.NPublic+1]
return &proof, pubSignals, nil }
func calculateH(pk *types.Pk, w types.Witness) []*big.Int { m := pk.DomainSize polAT := arrayOfZeroes(m) polBT := arrayOfZeroes(m)
for i := 0; i < pk.NVars; i++ { for j := range pk.PolsA[i] { polAT[j] = fAdd(polAT[j], fMul(w[i], pk.PolsA[i][j])) } for j := range pk.PolsB[i] { polBT[j] = fAdd(polBT[j], fMul(w[i], pk.PolsB[i][j])) } } polATe := utils.BigIntArrayToElementArray(polAT) polBTe := utils.BigIntArrayToElementArray(polBT)
polASe := ifft(polATe) polBSe := ifft(polBTe)
r := int(math.Log2(float64(m))) + 1 roots := newRootsT() roots.setRoots(r) for i := 0; i < len(polASe); i++ { polASe[i] = ff.NewElement().Mul(polASe[i], roots.roots[r][i]) polBSe[i] = ff.NewElement().Mul(polBSe[i], roots.roots[r][i]) }
polATodd := fft(polASe) polBTodd := fft(polBSe)
polABT := arrayOfZeroesE(len(polASe) * 2) for i := 0; i < len(polASe); i++ { polABT[2*i] = ff.NewElement().Mul(polATe[i], polBTe[i]) polABT[2*i+1] = ff.NewElement().Mul(polATodd[i], polBTodd[i]) }
hSeFull := ifft(polABT)
hSe := hSeFull[m:] return utils.ElementArrayToBigIntArray(hSe) }
|