|
|
package prover
import ( "math" "math/big" )
type rootsT struct { roots [][]*big.Int w []*big.Int }
func newRootsT() rootsT { var roots rootsT
rem := new(big.Int).Sub(R, big.NewInt(1)) s := 0 for rem.Bit(0) == 0 { // rem.Bit==0 when even
s++ rem = new(big.Int).Rsh(rem, 1) } roots.w = make([]*big.Int, s+1) roots.w[s] = fExp(big.NewInt(5), rem)
n := s - 1 for n >= 0 { roots.w[n] = fMul(roots.w[n+1], roots.w[n+1]) n-- } roots.roots = make([][]*big.Int, 50) // TODO WIP
roots.setRoots(15) return roots }
func (roots rootsT) setRoots(n int) { for i := n; i >= 0 && nil == roots.roots[i]; i-- { // TODO tmp i<=len(r)
r := big.NewInt(1) nroots := 1 << i var rootsi []*big.Int for j := 0; j < nroots; j++ { rootsi = append(rootsi, r) r = fMul(r, roots.w[i]) } roots.roots[i] = rootsi } }
func fft(roots rootsT, pall []*big.Int, bits, offset, step int) []*big.Int { n := 1 << bits if n == 1 { return []*big.Int{pall[offset]} } else if n == 2 { return []*big.Int{ fAdd(pall[offset], pall[offset+step]), // TODO tmp
fSub(pall[offset], pall[offset+step]), } }
ndiv2 := n >> 1 p1 := fft(roots, pall, bits-1, offset, step*2) p2 := fft(roots, pall, bits-1, offset+step, step*2)
// var out []*big.Int
out := make([]*big.Int, n) for i := 0; i < ndiv2; i++ { // fmt.Println(i, len(roots.roots))
out[i] = fAdd(p1[i], fMul(roots.roots[bits][i], p2[i])) out[i+ndiv2] = fSub(p1[i], fMul(roots.roots[bits][i], p2[i])) } return out }
func ifft(p []*big.Int) []*big.Int { if len(p) <= 1 { return p } bits := math.Log2(float64(len(p)-1)) + 1 roots := newRootsT() roots.setRoots(int(bits)) m := 1 << int(bits) ep := extend(p, m) res := fft(roots, ep, int(bits), 0, 1)
twoinvm := fInv(fMul(big.NewInt(1), big.NewInt(int64(m))))
var resn []*big.Int for i := 0; i < m; i++ { resn = append(resn, fMul(res[(m-i)%m], twoinvm)) }
return resn }
func extend(p []*big.Int, e int) []*big.Int { if e == len(p) { return p } z := arrayOfZeroes(e - len(p)) return append(p, z...) }
|