|
|
package prover
import ( "math/big" bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare" cryptoConstants "github.com/iden3/go-iden3-crypto/constants" )
type TableG1 struct{ data []*bn256.G1 }
func (t TableG1) GetData() []*bn256.G1 { return t.data }
// Compute table of gsize elements as ::
// Table[0] = Inf
// Table[1] = a[0]
// Table[2] = a[1]
// Table[3] = a[0]+a[1]
// .....
// Table[(1<<gsize)-1] = a[0]+a[1]+...+a[gsize-1]
func (t *TableG1) NewTableG1(a []*bn256.G1, gsize int){ // EC table
table := make([]*bn256.G1, 0)
// We need at least gsize elements. If not enough, fill with 0
a_ext := make([]*bn256.G1, 0) a_ext = append(a_ext, a...)
for i:=len(a); i<gsize; i++ { a_ext = append(a_ext,new(bn256.G1).ScalarBaseMult(big.NewInt(0))) }
elG1 := new(bn256.G1).ScalarBaseMult(big.NewInt(0)) table = append(table,elG1) last_pow2 := 1 nelems := 0 for i :=1; i< 1<<gsize; i++ { elG1 := new(bn256.G1) // if power of 2
if i & (i-1) == 0{ last_pow2 = i elG1.Set(a_ext[nelems]) nelems++ } else { elG1.Add(table[last_pow2], table[i-last_pow2]) // TODO bn256 doesn't export MakeAffine function. We need to fork repo
//table[i].MakeAffine()
} table = append(table, elG1) } t.data = table }
// Multiply scalar by precomputed table of G1 elements
func (t *TableG1) MulTableG1(k []*big.Int, gsize int) *bn256.G1 { // We need at least gsize elements. If not enough, fill with 0
k_ext := make([]*big.Int, 0) k_ext = append(k_ext, k...)
for i:=len(k); i < gsize; i++ { k_ext = append(k_ext,new(big.Int).SetUint64(0)) }
Q := new(bn256.G1).ScalarBaseMult(big.NewInt(0))
msb := getMsb(k_ext)
for i := msb-1; i >= 0; i-- { // TODO. bn256 doesn't export double operation. We will need to fork repo and export it
Q = new(bn256.G1).Add(Q,Q) b := getBit(k_ext,i) if b != 0 { // TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q.Add(Q, t.data[b]) } } return Q }
// Multiply scalar by precomputed table of G1 elements without intermediate doubling
func MulTableNoDoubleG1(t []TableG1, k []*big.Int, gsize int) *bn256.G1 { // We need at least gsize elements. If not enough, fill with 0
min_nelems := len(t) * gsize k_ext := make([]*big.Int, 0) k_ext = append(k_ext, k...) for i := len(k); i < min_nelems; i++ { k_ext = append(k_ext,new(big.Int).SetUint64(0)) } // Init Adders
nbitsQ := cryptoConstants.Q.BitLen() Q := make([]*bn256.G1,nbitsQ)
for i:=0; i< nbitsQ; i++ { Q[i] = new(bn256.G1).ScalarBaseMult(big.NewInt(0)) }
// Perform bitwise addition
for j:=0; j < len(t); j++ { msb := getMsb(k_ext[j*gsize:(j+1)*gsize])
for i := msb-1; i >= 0; i-- { b := getBit(k_ext[j*gsize:(j+1)*gsize],i) if b != 0 { // TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], t[j].data[b]) } } }
// Consolidate Addition
R := new(bn256.G1).Set(Q[nbitsQ-1]) for i:=nbitsQ-1; i>0; i-- { // TODO. bn256 doesn't export double operation. We will need to fork repo and export it
R = new(bn256.G1).Add(R,R) R.Add(R,Q[i-1]) } return R }
// Compute tables within function. This solution should still be faster than std multiplication
// for gsize = 7
func ScalarMult(a []*bn256.G1, k []*big.Int, gsize int) *bn256.G1 { ntables := int((len(a) + gsize - 1) / gsize) table := TableG1{} Q:= new(bn256.G1).ScalarBaseMult(new(big.Int))
for i:=0; i<ntables-1; i++ { table.NewTableG1( a[i*gsize:(i+1)*gsize], gsize) Q.Add(Q,table.MulTableG1(k[i*gsize:(i+1)*gsize], gsize)) } table.NewTableG1( a[(ntables-1)*gsize:], gsize) Q.Add(Q,table.MulTableG1(k[(ntables-1)*gsize:], gsize))
return Q }
// Multiply scalar by precomputed table of G1 elements without intermediate doubling
func ScalarMultNoDoubleG1(a []*bn256.G1, k []*big.Int, gsize int) *bn256.G1 { ntables := int((len(a) + gsize - 1) / gsize) table := TableG1{}
// We need at least gsize elements. If not enough, fill with 0
min_nelems := ntables * gsize k_ext := make([]*big.Int, 0) k_ext = append(k_ext, k...) for i := len(k); i < min_nelems; i++ { k_ext = append(k_ext,new(big.Int).SetUint64(0)) } // Init Adders
nbitsQ := cryptoConstants.Q.BitLen() Q := make([]*bn256.G1,nbitsQ)
for i:=0; i< nbitsQ; i++ { Q[i] = new(bn256.G1).ScalarBaseMult(big.NewInt(0)) }
// Perform bitwise addition
for j:=0; j < ntables-1; j++ { table.NewTableG1( a[j*gsize:(j+1)*gsize], gsize) msb := getMsb(k_ext[j*gsize:(j+1)*gsize])
for i := msb-1; i >= 0; i-- { b := getBit(k_ext[j*gsize:(j+1)*gsize],i) if b != 0 { // TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b]) } } } table.NewTableG1( a[(ntables-1)*gsize:], gsize) msb := getMsb(k_ext[(ntables-1)*gsize:])
for i := msb-1; i >= 0; i-- { b := getBit(k_ext[(ntables-1)*gsize:],i) if b != 0 { // TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b]) } }
// Consolidate Addition
R := new(bn256.G1).Set(Q[nbitsQ-1]) for i:=nbitsQ-1; i>0; i-- { // TODO. bn256 doesn't export double operation. We will need to fork repo and export it
R = new(bn256.G1).Add(R,R) R.Add(R,Q[i-1]) } return R }
// Return most significant bit position in a group of Big Integers
func getMsb(k []*big.Int) int{ msb := 0
for _, el := range(k){ tmp_msb := el.BitLen() if tmp_msb > msb { msb = tmp_msb } } return msb }
// Return ith bit in group of Big Integers
func getBit(k []*big.Int, i int) uint { table_idx := uint(0)
for idx, el := range(k){ b := el.Bit(i) table_idx += (b << idx) } return table_idx }
|