|
|
package gocircomprover
import ( "crypto/rand" "math/big"
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare" )
// Proof is the data structure of the Groth16 zkSNARK proof
type Proof struct { A *bn256.G1 B *bn256.G2 C *bn256.G1 }
// Pk holds the data structure of the ProvingKey
type Pk struct { A []*bn256.G1 B2 []*bn256.G2 B1 []*bn256.G1 C []*bn256.G1 NVars int NPublic int VkAlpha1 *bn256.G1 VkDelta1 *bn256.G1 VkBeta1 *bn256.G1 VkBeta2 *bn256.G2 VkDelta2 *bn256.G2 HExps []*bn256.G1 DomainSize int PolsA []map[int]*big.Int PolsB []map[int]*big.Int PolsC []map[int]*big.Int }
// Witness contains the witness
type Witness []*big.Int
// R is the mod of the finite field
var R, _ = new(big.Int).SetString("21888242871839275222246405745257275088548364400416034343698204186575808495617", 10)
func randBigInt() (*big.Int, error) { maxbits := R.BitLen() b := make([]byte, (maxbits/8)-1) _, err := rand.Read(b) if err != nil { return nil, err } r := new(big.Int).SetBytes(b) rq := new(big.Int).Mod(r, R)
return rq, nil }
// GenerateProof generates the Groth16 zkSNARK proof
func GenerateProof(pk *Pk, w Witness) (*Proof, []*big.Int, error) { var proof Proof
r, err := randBigInt() if err != nil { return nil, nil, err } s, err := randBigInt() if err != nil { return nil, nil, err }
proof.A = new(bn256.G1).ScalarBaseMult(big.NewInt(0)) proof.B = new(bn256.G2).ScalarBaseMult(big.NewInt(0)) proof.C = new(bn256.G1).ScalarBaseMult(big.NewInt(0)) proofBG1 := new(bn256.G1).ScalarBaseMult(big.NewInt(0))
for i := 0; i < pk.NVars; i++ { proof.A = new(bn256.G1).Add(proof.A, new(bn256.G1).ScalarMult(pk.A[i], w[i])) proof.B = new(bn256.G2).Add(proof.B, new(bn256.G2).ScalarMult(pk.B2[i], w[i])) proofBG1 = new(bn256.G1).Add(proofBG1, new(bn256.G1).ScalarMult(pk.B1[i], w[i])) }
for i := pk.NPublic + 1; i < pk.NVars; i++ { proof.C = new(bn256.G1).Add(proof.C, new(bn256.G1).ScalarMult(pk.C[i], w[i])) }
proof.A = new(bn256.G1).Add(proof.A, pk.VkAlpha1) proof.A = new(bn256.G1).Add(proof.A, new(bn256.G1).ScalarMult(pk.VkDelta1, r))
proof.B = new(bn256.G2).Add(proof.B, pk.VkBeta2) proof.B = new(bn256.G2).Add(proof.B, new(bn256.G2).ScalarMult(pk.VkDelta2, s))
proofBG1 = new(bn256.G1).Add(proofBG1, pk.VkBeta1) proofBG1 = new(bn256.G1).Add(proofBG1, new(bn256.G1).ScalarMult(pk.VkDelta1, s))
h := calculateH(pk, w)
for i := 0; i < len(h); i++ { proof.C = new(bn256.G1).Add(proof.C, new(bn256.G1).ScalarMult(pk.HExps[i], h[i])) } proof.C = new(bn256.G1).Add(proof.C, new(bn256.G1).ScalarMult(proof.A, s)) proof.C = new(bn256.G1).Add(proof.C, new(bn256.G1).ScalarMult(proofBG1, r)) rsneg := new(big.Int).Mod(new(big.Int).Neg(new(big.Int).Mul(r, s)), R) // fAdd & fMul
proof.C = new(bn256.G1).Add(proof.C, new(bn256.G1).ScalarMult(pk.VkDelta1, rsneg))
pubSignals := w[1 : pk.NPublic+1]
return &proof, pubSignals, nil }
func calculateH(pk *Pk, w Witness) []*big.Int { m := pk.DomainSize polAT := arrayOfZeroes(m) polBT := arrayOfZeroes(m) polCT := arrayOfZeroes(m)
for i := 0; i < pk.NVars; i++ { for j := range pk.PolsA[i] { polAT[j] = fAdd(polAT[j], fMul(w[i], pk.PolsA[i][j])) } for j := range pk.PolsB[i] { polBT[j] = fAdd(polBT[j], fMul(w[i], pk.PolsB[i][j])) } for j := range pk.PolsC[i] { polCT[j] = fAdd(polCT[j], fMul(w[i], pk.PolsC[i][j])) } } polAS := ifft(polAT) polBS := ifft(polBT)
polABS := polynomialMul(polAS, polBS) polCS := ifft(polCT) polABCS := polynomialSub(polABS, polCS)
hS := polABCS[m:] return hS }
|