Add proof parsers to string (decimal & hex)

Also adds ProofToSmartContractFormat, which returns a ProofString as the
proof.B elements swap is not a valid point for the bn256.G2 format.

Also unexports internal structs and methods of the prover package.
Also apply golint.
This commit is contained in:
arnaucube
2020-05-06 14:18:07 +02:00
parent 6ec118d4e2
commit 0f48cfa2a5
6 changed files with 268 additions and 178 deletions

View File

@@ -1,16 +1,17 @@
package prover
import (
"math/big"
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
cryptoConstants "github.com/iden3/go-iden3-crypto/constants"
"math/big"
)
type TableG1 struct {
type tableG1 struct {
data []*bn256.G1
}
func (t TableG1) GetData() []*bn256.G1 {
func (t tableG1) getData() []*bn256.G1 {
return t.data
}
@@ -21,31 +22,31 @@ func (t TableG1) GetData() []*bn256.G1 {
// Table[3] = a[0]+a[1]
// .....
// Table[(1<<gsize)-1] = a[0]+a[1]+...+a[gsize-1]
func (t *TableG1) NewTableG1(a []*bn256.G1, gsize int, toaffine bool) {
func (t *tableG1) newTableG1(a []*bn256.G1, gsize int, toaffine bool) {
// EC table
table := make([]*bn256.G1, 0)
// We need at least gsize elements. If not enough, fill with 0
a_ext := make([]*bn256.G1, 0)
a_ext = append(a_ext, a...)
aExt := make([]*bn256.G1, 0)
aExt = append(aExt, a...)
for i := len(a); i < gsize; i++ {
a_ext = append(a_ext, new(bn256.G1).ScalarBaseMult(big.NewInt(0)))
aExt = append(aExt, new(bn256.G1).ScalarBaseMult(big.NewInt(0)))
}
elG1 := new(bn256.G1).ScalarBaseMult(big.NewInt(0))
table = append(table, elG1)
last_pow2 := 1
lastPow2 := 1
nelems := 0
for i := 1; i < 1<<gsize; i++ {
elG1 := new(bn256.G1)
// if power of 2
if i&(i-1) == 0 {
last_pow2 = i
elG1.Set(a_ext[nelems])
lastPow2 = i
elG1.Set(aExt[nelems])
nelems++
} else {
elG1.Add(table[last_pow2], table[i-last_pow2])
elG1.Add(table[lastPow2], table[i-lastPow2])
// TODO bn256 doesn't export MakeAffine function. We need to fork repo
//table[i].MakeAffine()
}
@@ -60,7 +61,7 @@ func (t *TableG1) NewTableG1(a []*bn256.G1, gsize int, toaffine bool) {
t.data = table
}
func (t TableG1) Marshal() []byte {
func (t tableG1) Marshal() []byte {
info := make([]byte, 0)
for _, el := range t.data {
info = append(info, el.Marshal()...)
@@ -70,43 +71,42 @@ func (t TableG1) Marshal() []byte {
}
// Multiply scalar by precomputed table of G1 elements
func (t *TableG1) MulTableG1(k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 {
func (t *tableG1) mulTableG1(k []*big.Int, qPrev *bn256.G1, gsize int) *bn256.G1 {
// We need at least gsize elements. If not enough, fill with 0
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
for i := len(k); i < gsize; i++ {
k_ext = append(k_ext, new(big.Int).SetUint64(0))
kExt = append(kExt, new(big.Int).SetUint64(0))
}
Q := new(bn256.G1).ScalarBaseMult(big.NewInt(0))
msb := getMsb(k_ext)
msb := getMsb(kExt)
for i := msb - 1; i >= 0; i-- {
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
Q = new(bn256.G1).Add(Q, Q)
b := getBit(k_ext, i)
b := getBit(kExt, i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q.Add(Q, t.data[b])
}
}
if Q_prev != nil {
return Q.Add(Q, Q_prev)
} else {
return Q
if qPrev != nil {
return Q.Add(Q, qPrev)
}
return Q
}
// Multiply scalar by precomputed table of G1 elements without intermediate doubling
func MulTableNoDoubleG1(t []TableG1, k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 {
func mulTableNoDoubleG1(t []tableG1, k []*big.Int, qPrev *bn256.G1, gsize int) *bn256.G1 {
// We need at least gsize elements. If not enough, fill with 0
min_nelems := len(t) * gsize
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i := len(k); i < min_nelems; i++ {
k_ext = append(k_ext, new(big.Int).SetUint64(0))
minNElems := len(t) * gsize
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
for i := len(k); i < minNElems; i++ {
kExt = append(kExt, new(big.Int).SetUint64(0))
}
// Init Adders
nbitsQ := cryptoConstants.Q.BitLen()
@@ -118,10 +118,10 @@ func MulTableNoDoubleG1(t []TableG1, k []*big.Int, Q_prev *bn256.G1, gsize int)
// Perform bitwise addition
for j := 0; j < len(t); j++ {
msb := getMsb(k_ext[j*gsize : (j+1)*gsize])
msb := getMsb(kExt[j*gsize : (j+1)*gsize])
for i := msb - 1; i >= 0; i-- {
b := getBit(k_ext[j*gsize:(j+1)*gsize], i)
b := getBit(kExt[j*gsize:(j+1)*gsize], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], t[j].data[b])
@@ -137,45 +137,43 @@ func MulTableNoDoubleG1(t []TableG1, k []*big.Int, Q_prev *bn256.G1, gsize int)
R.Add(R, Q[i-1])
}
if Q_prev != nil {
return R.Add(R, Q_prev)
} else {
return R
if qPrev != nil {
return R.Add(R, qPrev)
}
return R
}
// Compute tables within function. This solution should still be faster than std multiplication
// for gsize = 7
func ScalarMultG1(a []*bn256.G1, k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 {
func scalarMultG1(a []*bn256.G1, k []*big.Int, qPrev *bn256.G1, gsize int) *bn256.G1 {
ntables := int((len(a) + gsize - 1) / gsize)
table := TableG1{}
table := tableG1{}
Q := new(bn256.G1).ScalarBaseMult(new(big.Int))
for i := 0; i < ntables-1; i++ {
table.NewTableG1(a[i*gsize:(i+1)*gsize], gsize, false)
Q = table.MulTableG1(k[i*gsize:(i+1)*gsize], Q, gsize)
table.newTableG1(a[i*gsize:(i+1)*gsize], gsize, false)
Q = table.mulTableG1(k[i*gsize:(i+1)*gsize], Q, gsize)
}
table.NewTableG1(a[(ntables-1)*gsize:], gsize, false)
Q = table.MulTableG1(k[(ntables-1)*gsize:], Q, gsize)
table.newTableG1(a[(ntables-1)*gsize:], gsize, false)
Q = table.mulTableG1(k[(ntables-1)*gsize:], Q, gsize)
if Q_prev != nil {
return Q.Add(Q, Q_prev)
} else {
return Q
if qPrev != nil {
return Q.Add(Q, qPrev)
}
return Q
}
// Multiply scalar by precomputed table of G1 elements without intermediate doubling
func ScalarMultNoDoubleG1(a []*bn256.G1, k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 {
func scalarMultNoDoubleG1(a []*bn256.G1, k []*big.Int, qPrev *bn256.G1, gsize int) *bn256.G1 {
ntables := int((len(a) + gsize - 1) / gsize)
table := TableG1{}
table := tableG1{}
// We need at least gsize elements. If not enough, fill with 0
min_nelems := ntables * gsize
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i := len(k); i < min_nelems; i++ {
k_ext = append(k_ext, new(big.Int).SetUint64(0))
minNElems := ntables * gsize
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
for i := len(k); i < minNElems; i++ {
kExt = append(kExt, new(big.Int).SetUint64(0))
}
// Init Adders
nbitsQ := cryptoConstants.Q.BitLen()
@@ -187,22 +185,22 @@ func ScalarMultNoDoubleG1(a []*bn256.G1, k []*big.Int, Q_prev *bn256.G1, gsize i
// Perform bitwise addition
for j := 0; j < ntables-1; j++ {
table.NewTableG1(a[j*gsize:(j+1)*gsize], gsize, false)
msb := getMsb(k_ext[j*gsize : (j+1)*gsize])
table.newTableG1(a[j*gsize:(j+1)*gsize], gsize, false)
msb := getMsb(kExt[j*gsize : (j+1)*gsize])
for i := msb - 1; i >= 0; i-- {
b := getBit(k_ext[j*gsize:(j+1)*gsize], i)
b := getBit(kExt[j*gsize:(j+1)*gsize], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b])
}
}
}
table.NewTableG1(a[(ntables-1)*gsize:], gsize, false)
msb := getMsb(k_ext[(ntables-1)*gsize:])
table.newTableG1(a[(ntables-1)*gsize:], gsize, false)
msb := getMsb(kExt[(ntables-1)*gsize:])
for i := msb - 1; i >= 0; i-- {
b := getBit(k_ext[(ntables-1)*gsize:], i)
b := getBit(kExt[(ntables-1)*gsize:], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b])
@@ -216,11 +214,10 @@ func ScalarMultNoDoubleG1(a []*bn256.G1, k []*big.Int, Q_prev *bn256.G1, gsize i
R = new(bn256.G1).Add(R, R)
R.Add(R, Q[i-1])
}
if Q_prev != nil {
return R.Add(R, Q_prev)
} else {
return R
if qPrev != nil {
return R.Add(R, qPrev)
}
return R
}
/////
@@ -228,11 +225,11 @@ func ScalarMultNoDoubleG1(a []*bn256.G1, k []*big.Int, Q_prev *bn256.G1, gsize i
// TODO - How can avoid replicating code in G2?
//G2
type TableG2 struct {
type tableG2 struct {
data []*bn256.G2
}
func (t TableG2) GetData() []*bn256.G2 {
func (t tableG2) getData() []*bn256.G2 {
return t.data
}
@@ -244,31 +241,31 @@ func (t TableG2) GetData() []*bn256.G2 {
// .....
// Table[(1<<gsize)-1] = a[0]+a[1]+...+a[gsize-1]
// TODO -> toaffine = True doesnt work. Problem with Marshal/Unmarshal
func (t *TableG2) NewTableG2(a []*bn256.G2, gsize int, toaffine bool) {
func (t *tableG2) newTableG2(a []*bn256.G2, gsize int, toaffine bool) {
// EC table
table := make([]*bn256.G2, 0)
// We need at least gsize elements. If not enough, fill with 0
a_ext := make([]*bn256.G2, 0)
a_ext = append(a_ext, a...)
aExt := make([]*bn256.G2, 0)
aExt = append(aExt, a...)
for i := len(a); i < gsize; i++ {
a_ext = append(a_ext, new(bn256.G2).ScalarBaseMult(big.NewInt(0)))
aExt = append(aExt, new(bn256.G2).ScalarBaseMult(big.NewInt(0)))
}
elG2 := new(bn256.G2).ScalarBaseMult(big.NewInt(0))
table = append(table, elG2)
last_pow2 := 1
lastPow2 := 1
nelems := 0
for i := 1; i < 1<<gsize; i++ {
elG2 := new(bn256.G2)
// if power of 2
if i&(i-1) == 0 {
last_pow2 = i
elG2.Set(a_ext[nelems])
lastPow2 = i
elG2.Set(aExt[nelems])
nelems++
} else {
elG2.Add(table[last_pow2], table[i-last_pow2])
elG2.Add(table[lastPow2], table[i-lastPow2])
// TODO bn256 doesn't export MakeAffine function. We need to fork repo
//table[i].MakeAffine()
}
@@ -283,7 +280,7 @@ func (t *TableG2) NewTableG2(a []*bn256.G2, gsize int, toaffine bool) {
t.data = table
}
func (t TableG2) Marshal() []byte {
func (t tableG2) Marshal() []byte {
info := make([]byte, 0)
for _, el := range t.data {
info = append(info, el.Marshal()...)
@@ -293,43 +290,42 @@ func (t TableG2) Marshal() []byte {
}
// Multiply scalar by precomputed table of G2 elements
func (t *TableG2) MulTableG2(k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 {
func (t *tableG2) mulTableG2(k []*big.Int, qPrev *bn256.G2, gsize int) *bn256.G2 {
// We need at least gsize elements. If not enough, fill with 0
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
for i := len(k); i < gsize; i++ {
k_ext = append(k_ext, new(big.Int).SetUint64(0))
kExt = append(kExt, new(big.Int).SetUint64(0))
}
Q := new(bn256.G2).ScalarBaseMult(big.NewInt(0))
msb := getMsb(k_ext)
msb := getMsb(kExt)
for i := msb - 1; i >= 0; i-- {
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
Q = new(bn256.G2).Add(Q, Q)
b := getBit(k_ext, i)
b := getBit(kExt, i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q.Add(Q, t.data[b])
}
}
if Q_prev != nil {
return Q.Add(Q, Q_prev)
} else {
return Q
if qPrev != nil {
return Q.Add(Q, qPrev)
}
return Q
}
// Multiply scalar by precomputed table of G2 elements without intermediate doubling
func MulTableNoDoubleG2(t []TableG2, k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 {
func mulTableNoDoubleG2(t []tableG2, k []*big.Int, qPrev *bn256.G2, gsize int) *bn256.G2 {
// We need at least gsize elements. If not enough, fill with 0
min_nelems := len(t) * gsize
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i := len(k); i < min_nelems; i++ {
k_ext = append(k_ext, new(big.Int).SetUint64(0))
minNElems := len(t) * gsize
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
for i := len(k); i < minNElems; i++ {
kExt = append(kExt, new(big.Int).SetUint64(0))
}
// Init Adders
nbitsQ := cryptoConstants.Q.BitLen()
@@ -341,10 +337,10 @@ func MulTableNoDoubleG2(t []TableG2, k []*big.Int, Q_prev *bn256.G2, gsize int)
// Perform bitwise addition
for j := 0; j < len(t); j++ {
msb := getMsb(k_ext[j*gsize : (j+1)*gsize])
msb := getMsb(kExt[j*gsize : (j+1)*gsize])
for i := msb - 1; i >= 0; i-- {
b := getBit(k_ext[j*gsize:(j+1)*gsize], i)
b := getBit(kExt[j*gsize:(j+1)*gsize], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], t[j].data[b])
@@ -359,45 +355,43 @@ func MulTableNoDoubleG2(t []TableG2, k []*big.Int, Q_prev *bn256.G2, gsize int)
R = new(bn256.G2).Add(R, R)
R.Add(R, Q[i-1])
}
if Q_prev != nil {
return R.Add(R, Q_prev)
} else {
return R
if qPrev != nil {
return R.Add(R, qPrev)
}
return R
}
// Compute tables within function. This solution should still be faster than std multiplication
// for gsize = 7
func ScalarMultG2(a []*bn256.G2, k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 {
func scalarMultG2(a []*bn256.G2, k []*big.Int, qPrev *bn256.G2, gsize int) *bn256.G2 {
ntables := int((len(a) + gsize - 1) / gsize)
table := TableG2{}
table := tableG2{}
Q := new(bn256.G2).ScalarBaseMult(new(big.Int))
for i := 0; i < ntables-1; i++ {
table.NewTableG2(a[i*gsize:(i+1)*gsize], gsize, false)
Q = table.MulTableG2(k[i*gsize:(i+1)*gsize], Q, gsize)
table.newTableG2(a[i*gsize:(i+1)*gsize], gsize, false)
Q = table.mulTableG2(k[i*gsize:(i+1)*gsize], Q, gsize)
}
table.NewTableG2(a[(ntables-1)*gsize:], gsize, false)
Q = table.MulTableG2(k[(ntables-1)*gsize:], Q, gsize)
table.newTableG2(a[(ntables-1)*gsize:], gsize, false)
Q = table.mulTableG2(k[(ntables-1)*gsize:], Q, gsize)
if Q_prev != nil {
return Q.Add(Q, Q_prev)
} else {
return Q
if qPrev != nil {
return Q.Add(Q, qPrev)
}
return Q
}
// Multiply scalar by precomputed table of G2 elements without intermediate doubling
func ScalarMultNoDoubleG2(a []*bn256.G2, k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 {
func scalarMultNoDoubleG2(a []*bn256.G2, k []*big.Int, qPrev *bn256.G2, gsize int) *bn256.G2 {
ntables := int((len(a) + gsize - 1) / gsize)
table := TableG2{}
table := tableG2{}
// We need at least gsize elements. If not enough, fill with 0
min_nelems := ntables * gsize
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i := len(k); i < min_nelems; i++ {
k_ext = append(k_ext, new(big.Int).SetUint64(0))
minNElems := ntables * gsize
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
for i := len(k); i < minNElems; i++ {
kExt = append(kExt, new(big.Int).SetUint64(0))
}
// Init Adders
nbitsQ := cryptoConstants.Q.BitLen()
@@ -409,22 +403,22 @@ func ScalarMultNoDoubleG2(a []*bn256.G2, k []*big.Int, Q_prev *bn256.G2, gsize i
// Perform bitwise addition
for j := 0; j < ntables-1; j++ {
table.NewTableG2(a[j*gsize:(j+1)*gsize], gsize, false)
msb := getMsb(k_ext[j*gsize : (j+1)*gsize])
table.newTableG2(a[j*gsize:(j+1)*gsize], gsize, false)
msb := getMsb(kExt[j*gsize : (j+1)*gsize])
for i := msb - 1; i >= 0; i-- {
b := getBit(k_ext[j*gsize:(j+1)*gsize], i)
b := getBit(kExt[j*gsize:(j+1)*gsize], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b])
}
}
}
table.NewTableG2(a[(ntables-1)*gsize:], gsize, false)
msb := getMsb(k_ext[(ntables-1)*gsize:])
table.newTableG2(a[(ntables-1)*gsize:], gsize, false)
msb := getMsb(kExt[(ntables-1)*gsize:])
for i := msb - 1; i >= 0; i-- {
b := getBit(k_ext[(ntables-1)*gsize:], i)
b := getBit(kExt[(ntables-1)*gsize:], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b])
@@ -438,11 +432,10 @@ func ScalarMultNoDoubleG2(a []*bn256.G2, k []*big.Int, Q_prev *bn256.G2, gsize i
R = new(bn256.G2).Add(R, R)
R.Add(R, Q[i-1])
}
if Q_prev != nil {
return R.Add(R, Q_prev)
} else {
return R
if qPrev != nil {
return R.Add(R, qPrev)
}
return R
}
// Return most significant bit position in a group of Big Integers
@@ -450,9 +443,9 @@ func getMsb(k []*big.Int) int {
msb := 0
for _, el := range k {
tmp_msb := el.BitLen()
if tmp_msb > msb {
msb = tmp_msb
tmpMsb := el.BitLen()
if tmpMsb > msb {
msb = tmpMsb
}
}
return msb
@@ -460,11 +453,11 @@ func getMsb(k []*big.Int) int {
// Return ith bit in group of Big Integers
func getBit(k []*big.Int, i int) uint {
table_idx := uint(0)
tableIdx := uint(0)
for idx, el := range k {
b := el.Bit(i)
table_idx += (b << idx)
tableIdx += (b << idx)
}
return table_idx
return tableIdx
}

View File

@@ -4,10 +4,11 @@ import (
"bytes"
"crypto/rand"
"fmt"
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
"math/big"
"testing"
"time"
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
)
const (
@@ -60,31 +61,31 @@ func TestTableG1(t *testing.T) {
for gsize := 2; gsize < 10; gsize++ {
ntables := int((n + gsize - 1) / gsize)
table := make([]TableG1, ntables)
table := make([]tableG1, ntables)
for i := 0; i < ntables-1; i++ {
table[i].NewTableG1(arrayG1[i*gsize:(i+1)*gsize], gsize, true)
table[i].newTableG1(arrayG1[i*gsize:(i+1)*gsize], gsize, true)
}
table[ntables-1].NewTableG1(arrayG1[(ntables-1)*gsize:], gsize, true)
table[ntables-1].newTableG1(arrayG1[(ntables-1)*gsize:], gsize, true)
beforeT = time.Now()
Q2 := new(bn256.G1).ScalarBaseMult(new(big.Int))
for i := 0; i < ntables-1; i++ {
Q2 = table[i].MulTableG1(arrayW[i*gsize:(i+1)*gsize], Q2, gsize)
Q2 = table[i].mulTableG1(arrayW[i*gsize:(i+1)*gsize], Q2, gsize)
}
Q2 = table[ntables-1].MulTableG1(arrayW[(ntables-1)*gsize:], Q2, gsize)
Q2 = table[ntables-1].mulTableG1(arrayW[(ntables-1)*gsize:], Q2, gsize)
fmt.Printf("Gsize : %d, TMult time elapsed: %s\n", gsize, time.Since(beforeT))
beforeT = time.Now()
Q3 := ScalarMultG1(arrayG1, arrayW, nil, gsize)
Q3 := scalarMultG1(arrayG1, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMult time elapsed (inc table comp): %s\n", gsize, time.Since(beforeT))
beforeT = time.Now()
Q4 := MulTableNoDoubleG1(table, arrayW, nil, gsize)
Q4 := mulTableNoDoubleG1(table, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMultNoDouble time elapsed: %s\n", gsize, time.Since(beforeT))
beforeT = time.Now()
Q5 := ScalarMultNoDoubleG1(arrayG1, arrayW, nil, gsize)
Q5 := scalarMultNoDoubleG1(arrayG1, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMultNoDouble time elapsed (inc table comp): %s\n", gsize, time.Since(beforeT))
if bytes.Compare(Q1.Marshal(), Q2.Marshal()) != 0 {
@@ -119,31 +120,31 @@ func TestTableG2(t *testing.T) {
for gsize := 2; gsize < 10; gsize++ {
ntables := int((n + gsize - 1) / gsize)
table := make([]TableG2, ntables)
table := make([]tableG2, ntables)
for i := 0; i < ntables-1; i++ {
table[i].NewTableG2(arrayG2[i*gsize:(i+1)*gsize], gsize, false)
table[i].newTableG2(arrayG2[i*gsize:(i+1)*gsize], gsize, false)
}
table[ntables-1].NewTableG2(arrayG2[(ntables-1)*gsize:], gsize, false)
table[ntables-1].newTableG2(arrayG2[(ntables-1)*gsize:], gsize, false)
beforeT = time.Now()
Q2 := new(bn256.G2).ScalarBaseMult(new(big.Int))
for i := 0; i < ntables-1; i++ {
Q2 = table[i].MulTableG2(arrayW[i*gsize:(i+1)*gsize], Q2, gsize)
Q2 = table[i].mulTableG2(arrayW[i*gsize:(i+1)*gsize], Q2, gsize)
}
Q2 = table[ntables-1].MulTableG2(arrayW[(ntables-1)*gsize:], Q2, gsize)
Q2 = table[ntables-1].mulTableG2(arrayW[(ntables-1)*gsize:], Q2, gsize)
fmt.Printf("Gsize : %d, TMult time elapsed: %s\n", gsize, time.Since(beforeT))
beforeT = time.Now()
Q3 := ScalarMultG2(arrayG2, arrayW, nil, gsize)
Q3 := scalarMultG2(arrayG2, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMult time elapsed (inc table comp): %s\n", gsize, time.Since(beforeT))
beforeT = time.Now()
Q4 := MulTableNoDoubleG2(table, arrayW, nil, gsize)
Q4 := mulTableNoDoubleG2(table, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMultNoDouble time elapsed: %s\n", gsize, time.Since(beforeT))
beforeT = time.Now()
Q5 := ScalarMultNoDoubleG2(arrayG2, arrayW, nil, gsize)
Q5 := scalarMultNoDoubleG2(arrayG2, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMultNoDouble time elapsed (inc table comp): %s\n", gsize, time.Since(beforeT))
if bytes.Compare(Q1.Marshal(), Q2.Marshal()) != 0 {

View File

@@ -10,7 +10,7 @@ import (
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
"github.com/iden3/go-circom-prover-verifier/types"
"github.com/iden3/go-iden3-crypto/utils"
//"fmt"
//"fmt"
)
// Proof is the data structure of the Groth16 zkSNARK proof
@@ -45,7 +45,7 @@ type Witness []*big.Int
// Group Size
const (
GSIZE = 6
GSIZE = 6
)
func randBigInt() (*big.Int, error) {
@@ -81,34 +81,34 @@ func GenerateProof(pk *types.Pk, w types.Witness) (*types.Proof, []*big.Int, err
proofB := arrayOfZeroesG2(numcpu)
proofC := arrayOfZeroesG1(numcpu)
proofBG1 := arrayOfZeroesG1(numcpu)
gsize := GSIZE
gsize := GSIZE
var wg1 sync.WaitGroup
wg1.Add(numcpu)
for _cpu, _ranges := range ranges(pk.NVars, numcpu) {
// split 1
go func(cpu int, ranges [2]int) {
proofA[cpu] = ScalarMultNoDoubleG1(pk.A[ranges[0]:ranges[1]],
w[ranges[0]:ranges[1]],
proofA[cpu],
gsize)
proofB[cpu] = ScalarMultNoDoubleG2(pk.B2[ranges[0]:ranges[1]],
w[ranges[0]:ranges[1]],
proofB[cpu],
gsize)
proofBG1[cpu] = ScalarMultNoDoubleG1(pk.B1[ranges[0]:ranges[1]],
w[ranges[0]:ranges[1]],
proofBG1[cpu],
gsize)
min_lim := pk.NPublic+1
if ranges[0] > pk.NPublic+1 {
min_lim = ranges[0]
}
if ranges[1] > pk.NPublic + 1 {
proofC[cpu] = ScalarMultNoDoubleG1(pk.C[min_lim:ranges[1]],
w[min_lim:ranges[1]],
proofC[cpu],
gsize)
}
proofA[cpu] = scalarMultNoDoubleG1(pk.A[ranges[0]:ranges[1]],
w[ranges[0]:ranges[1]],
proofA[cpu],
gsize)
proofB[cpu] = scalarMultNoDoubleG2(pk.B2[ranges[0]:ranges[1]],
w[ranges[0]:ranges[1]],
proofB[cpu],
gsize)
proofBG1[cpu] = scalarMultNoDoubleG1(pk.B1[ranges[0]:ranges[1]],
w[ranges[0]:ranges[1]],
proofBG1[cpu],
gsize)
minLim := pk.NPublic + 1
if ranges[0] > pk.NPublic+1 {
minLim = ranges[0]
}
if ranges[1] > pk.NPublic+1 {
proofC[cpu] = scalarMultNoDoubleG1(pk.C[minLim:ranges[1]],
w[minLim:ranges[1]],
proofC[cpu],
gsize)
}
wg1.Done()
}(_cpu, _ranges)
}
@@ -142,10 +142,10 @@ func GenerateProof(pk *types.Pk, w types.Witness) (*types.Proof, []*big.Int, err
for _cpu, _ranges := range ranges(len(h), numcpu) {
// split 2
go func(cpu int, ranges [2]int) {
proofC[cpu] = ScalarMultNoDoubleG1(pk.HExps[ranges[0]:ranges[1]],
h[ranges[0]:ranges[1]],
proofC[cpu],
gsize)
proofC[cpu] = scalarMultNoDoubleG1(pk.HExps[ranges[0]:ranges[1]],
h[ranges[0]:ranges[1]],
proofC[cpu],
gsize)
wg2.Done()
}(_cpu, _ranges)
}

View File

@@ -16,8 +16,8 @@ import (
func TestCircuitsGenerateProof(t *testing.T) {
testCircuitGenerateProof(t, "circuit1k") // 1000 constraints
testCircuitGenerateProof(t, "circuit5k") // 5000 constraints
//testCircuitGenerateProof(t, "circuit10k") // 10000 constraints
//testCircuitGenerateProof(t, "circuit20k") // 20000 constraints
//testCircuitGenerateProof(t, "circuit10k") // 10000 constraints
//testCircuitGenerateProof(t, "circuit20k") // 20000 constraints
}
func testCircuitGenerateProof(t *testing.T, circuit string) {