Add proof parsers to string (decimal & hex)

Also adds ProofToSmartContractFormat, which returns a ProofString as the
proof.B elements swap is not a valid point for the bn256.G2 format.

Also unexports internal structs and methods of the prover package.
Also apply golint.
This commit is contained in:
arnaucube
2020-05-06 14:18:07 +02:00
parent 6ec118d4e2
commit 0f48cfa2a5
6 changed files with 268 additions and 178 deletions

View File

@@ -1,16 +1,17 @@
package prover
import (
"math/big"
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
cryptoConstants "github.com/iden3/go-iden3-crypto/constants"
"math/big"
)
type TableG1 struct {
type tableG1 struct {
data []*bn256.G1
}
func (t TableG1) GetData() []*bn256.G1 {
func (t tableG1) getData() []*bn256.G1 {
return t.data
}
@@ -21,31 +22,31 @@ func (t TableG1) GetData() []*bn256.G1 {
// Table[3] = a[0]+a[1]
// .....
// Table[(1<<gsize)-1] = a[0]+a[1]+...+a[gsize-1]
func (t *TableG1) NewTableG1(a []*bn256.G1, gsize int, toaffine bool) {
func (t *tableG1) newTableG1(a []*bn256.G1, gsize int, toaffine bool) {
// EC table
table := make([]*bn256.G1, 0)
// We need at least gsize elements. If not enough, fill with 0
a_ext := make([]*bn256.G1, 0)
a_ext = append(a_ext, a...)
aExt := make([]*bn256.G1, 0)
aExt = append(aExt, a...)
for i := len(a); i < gsize; i++ {
a_ext = append(a_ext, new(bn256.G1).ScalarBaseMult(big.NewInt(0)))
aExt = append(aExt, new(bn256.G1).ScalarBaseMult(big.NewInt(0)))
}
elG1 := new(bn256.G1).ScalarBaseMult(big.NewInt(0))
table = append(table, elG1)
last_pow2 := 1
lastPow2 := 1
nelems := 0
for i := 1; i < 1<<gsize; i++ {
elG1 := new(bn256.G1)
// if power of 2
if i&(i-1) == 0 {
last_pow2 = i
elG1.Set(a_ext[nelems])
lastPow2 = i
elG1.Set(aExt[nelems])
nelems++
} else {
elG1.Add(table[last_pow2], table[i-last_pow2])
elG1.Add(table[lastPow2], table[i-lastPow2])
// TODO bn256 doesn't export MakeAffine function. We need to fork repo
//table[i].MakeAffine()
}
@@ -60,7 +61,7 @@ func (t *TableG1) NewTableG1(a []*bn256.G1, gsize int, toaffine bool) {
t.data = table
}
func (t TableG1) Marshal() []byte {
func (t tableG1) Marshal() []byte {
info := make([]byte, 0)
for _, el := range t.data {
info = append(info, el.Marshal()...)
@@ -70,43 +71,42 @@ func (t TableG1) Marshal() []byte {
}
// Multiply scalar by precomputed table of G1 elements
func (t *TableG1) MulTableG1(k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 {
func (t *tableG1) mulTableG1(k []*big.Int, qPrev *bn256.G1, gsize int) *bn256.G1 {
// We need at least gsize elements. If not enough, fill with 0
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
for i := len(k); i < gsize; i++ {
k_ext = append(k_ext, new(big.Int).SetUint64(0))
kExt = append(kExt, new(big.Int).SetUint64(0))
}
Q := new(bn256.G1).ScalarBaseMult(big.NewInt(0))
msb := getMsb(k_ext)
msb := getMsb(kExt)
for i := msb - 1; i >= 0; i-- {
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
Q = new(bn256.G1).Add(Q, Q)
b := getBit(k_ext, i)
b := getBit(kExt, i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q.Add(Q, t.data[b])
}
}
if Q_prev != nil {
return Q.Add(Q, Q_prev)
} else {
return Q
if qPrev != nil {
return Q.Add(Q, qPrev)
}
return Q
}
// Multiply scalar by precomputed table of G1 elements without intermediate doubling
func MulTableNoDoubleG1(t []TableG1, k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 {
func mulTableNoDoubleG1(t []tableG1, k []*big.Int, qPrev *bn256.G1, gsize int) *bn256.G1 {
// We need at least gsize elements. If not enough, fill with 0
min_nelems := len(t) * gsize
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i := len(k); i < min_nelems; i++ {
k_ext = append(k_ext, new(big.Int).SetUint64(0))
minNElems := len(t) * gsize
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
for i := len(k); i < minNElems; i++ {
kExt = append(kExt, new(big.Int).SetUint64(0))
}
// Init Adders
nbitsQ := cryptoConstants.Q.BitLen()
@@ -118,10 +118,10 @@ func MulTableNoDoubleG1(t []TableG1, k []*big.Int, Q_prev *bn256.G1, gsize int)
// Perform bitwise addition
for j := 0; j < len(t); j++ {
msb := getMsb(k_ext[j*gsize : (j+1)*gsize])
msb := getMsb(kExt[j*gsize : (j+1)*gsize])
for i := msb - 1; i >= 0; i-- {
b := getBit(k_ext[j*gsize:(j+1)*gsize], i)
b := getBit(kExt[j*gsize:(j+1)*gsize], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], t[j].data[b])
@@ -137,45 +137,43 @@ func MulTableNoDoubleG1(t []TableG1, k []*big.Int, Q_prev *bn256.G1, gsize int)
R.Add(R, Q[i-1])
}
if Q_prev != nil {
return R.Add(R, Q_prev)
} else {
return R
if qPrev != nil {
return R.Add(R, qPrev)
}
return R
}
// Compute tables within function. This solution should still be faster than std multiplication
// for gsize = 7
func ScalarMultG1(a []*bn256.G1, k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 {
func scalarMultG1(a []*bn256.G1, k []*big.Int, qPrev *bn256.G1, gsize int) *bn256.G1 {
ntables := int((len(a) + gsize - 1) / gsize)
table := TableG1{}
table := tableG1{}
Q := new(bn256.G1).ScalarBaseMult(new(big.Int))
for i := 0; i < ntables-1; i++ {
table.NewTableG1(a[i*gsize:(i+1)*gsize], gsize, false)
Q = table.MulTableG1(k[i*gsize:(i+1)*gsize], Q, gsize)
table.newTableG1(a[i*gsize:(i+1)*gsize], gsize, false)
Q = table.mulTableG1(k[i*gsize:(i+1)*gsize], Q, gsize)
}
table.NewTableG1(a[(ntables-1)*gsize:], gsize, false)
Q = table.MulTableG1(k[(ntables-1)*gsize:], Q, gsize)
table.newTableG1(a[(ntables-1)*gsize:], gsize, false)
Q = table.mulTableG1(k[(ntables-1)*gsize:], Q, gsize)
if Q_prev != nil {
return Q.Add(Q, Q_prev)
} else {
return Q
if qPrev != nil {
return Q.Add(Q, qPrev)
}
return Q
}
// Multiply scalar by precomputed table of G1 elements without intermediate doubling
func ScalarMultNoDoubleG1(a []*bn256.G1, k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 {
func scalarMultNoDoubleG1(a []*bn256.G1, k []*big.Int, qPrev *bn256.G1, gsize int) *bn256.G1 {
ntables := int((len(a) + gsize - 1) / gsize)
table := TableG1{}
table := tableG1{}
// We need at least gsize elements. If not enough, fill with 0
min_nelems := ntables * gsize
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i := len(k); i < min_nelems; i++ {
k_ext = append(k_ext, new(big.Int).SetUint64(0))
minNElems := ntables * gsize
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
for i := len(k); i < minNElems; i++ {
kExt = append(kExt, new(big.Int).SetUint64(0))
}
// Init Adders
nbitsQ := cryptoConstants.Q.BitLen()
@@ -187,22 +185,22 @@ func ScalarMultNoDoubleG1(a []*bn256.G1, k []*big.Int, Q_prev *bn256.G1, gsize i
// Perform bitwise addition
for j := 0; j < ntables-1; j++ {
table.NewTableG1(a[j*gsize:(j+1)*gsize], gsize, false)
msb := getMsb(k_ext[j*gsize : (j+1)*gsize])
table.newTableG1(a[j*gsize:(j+1)*gsize], gsize, false)
msb := getMsb(kExt[j*gsize : (j+1)*gsize])
for i := msb - 1; i >= 0; i-- {
b := getBit(k_ext[j*gsize:(j+1)*gsize], i)
b := getBit(kExt[j*gsize:(j+1)*gsize], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b])
}
}
}
table.NewTableG1(a[(ntables-1)*gsize:], gsize, false)
msb := getMsb(k_ext[(ntables-1)*gsize:])
table.newTableG1(a[(ntables-1)*gsize:], gsize, false)
msb := getMsb(kExt[(ntables-1)*gsize:])
for i := msb - 1; i >= 0; i-- {
b := getBit(k_ext[(ntables-1)*gsize:], i)
b := getBit(kExt[(ntables-1)*gsize:], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b])
@@ -216,11 +214,10 @@ func ScalarMultNoDoubleG1(a []*bn256.G1, k []*big.Int, Q_prev *bn256.G1, gsize i
R = new(bn256.G1).Add(R, R)
R.Add(R, Q[i-1])
}
if Q_prev != nil {
return R.Add(R, Q_prev)
} else {
return R
if qPrev != nil {
return R.Add(R, qPrev)
}
return R
}
/////
@@ -228,11 +225,11 @@ func ScalarMultNoDoubleG1(a []*bn256.G1, k []*big.Int, Q_prev *bn256.G1, gsize i
// TODO - How can avoid replicating code in G2?
//G2
type TableG2 struct {
type tableG2 struct {
data []*bn256.G2
}
func (t TableG2) GetData() []*bn256.G2 {
func (t tableG2) getData() []*bn256.G2 {
return t.data
}
@@ -244,31 +241,31 @@ func (t TableG2) GetData() []*bn256.G2 {
// .....
// Table[(1<<gsize)-1] = a[0]+a[1]+...+a[gsize-1]
// TODO -> toaffine = True doesnt work. Problem with Marshal/Unmarshal
func (t *TableG2) NewTableG2(a []*bn256.G2, gsize int, toaffine bool) {
func (t *tableG2) newTableG2(a []*bn256.G2, gsize int, toaffine bool) {
// EC table
table := make([]*bn256.G2, 0)
// We need at least gsize elements. If not enough, fill with 0
a_ext := make([]*bn256.G2, 0)
a_ext = append(a_ext, a...)
aExt := make([]*bn256.G2, 0)
aExt = append(aExt, a...)
for i := len(a); i < gsize; i++ {
a_ext = append(a_ext, new(bn256.G2).ScalarBaseMult(big.NewInt(0)))
aExt = append(aExt, new(bn256.G2).ScalarBaseMult(big.NewInt(0)))
}
elG2 := new(bn256.G2).ScalarBaseMult(big.NewInt(0))
table = append(table, elG2)
last_pow2 := 1
lastPow2 := 1
nelems := 0
for i := 1; i < 1<<gsize; i++ {
elG2 := new(bn256.G2)
// if power of 2
if i&(i-1) == 0 {
last_pow2 = i
elG2.Set(a_ext[nelems])
lastPow2 = i
elG2.Set(aExt[nelems])
nelems++
} else {
elG2.Add(table[last_pow2], table[i-last_pow2])
elG2.Add(table[lastPow2], table[i-lastPow2])
// TODO bn256 doesn't export MakeAffine function. We need to fork repo
//table[i].MakeAffine()
}
@@ -283,7 +280,7 @@ func (t *TableG2) NewTableG2(a []*bn256.G2, gsize int, toaffine bool) {
t.data = table
}
func (t TableG2) Marshal() []byte {
func (t tableG2) Marshal() []byte {
info := make([]byte, 0)
for _, el := range t.data {
info = append(info, el.Marshal()...)
@@ -293,43 +290,42 @@ func (t TableG2) Marshal() []byte {
}
// Multiply scalar by precomputed table of G2 elements
func (t *TableG2) MulTableG2(k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 {
func (t *tableG2) mulTableG2(k []*big.Int, qPrev *bn256.G2, gsize int) *bn256.G2 {
// We need at least gsize elements. If not enough, fill with 0
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
for i := len(k); i < gsize; i++ {
k_ext = append(k_ext, new(big.Int).SetUint64(0))
kExt = append(kExt, new(big.Int).SetUint64(0))
}
Q := new(bn256.G2).ScalarBaseMult(big.NewInt(0))
msb := getMsb(k_ext)
msb := getMsb(kExt)
for i := msb - 1; i >= 0; i-- {
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
Q = new(bn256.G2).Add(Q, Q)
b := getBit(k_ext, i)
b := getBit(kExt, i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q.Add(Q, t.data[b])
}
}
if Q_prev != nil {
return Q.Add(Q, Q_prev)
} else {
return Q
if qPrev != nil {
return Q.Add(Q, qPrev)
}
return Q
}
// Multiply scalar by precomputed table of G2 elements without intermediate doubling
func MulTableNoDoubleG2(t []TableG2, k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 {
func mulTableNoDoubleG2(t []tableG2, k []*big.Int, qPrev *bn256.G2, gsize int) *bn256.G2 {
// We need at least gsize elements. If not enough, fill with 0
min_nelems := len(t) * gsize
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i := len(k); i < min_nelems; i++ {
k_ext = append(k_ext, new(big.Int).SetUint64(0))
minNElems := len(t) * gsize
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
for i := len(k); i < minNElems; i++ {
kExt = append(kExt, new(big.Int).SetUint64(0))
}
// Init Adders
nbitsQ := cryptoConstants.Q.BitLen()
@@ -341,10 +337,10 @@ func MulTableNoDoubleG2(t []TableG2, k []*big.Int, Q_prev *bn256.G2, gsize int)
// Perform bitwise addition
for j := 0; j < len(t); j++ {
msb := getMsb(k_ext[j*gsize : (j+1)*gsize])
msb := getMsb(kExt[j*gsize : (j+1)*gsize])
for i := msb - 1; i >= 0; i-- {
b := getBit(k_ext[j*gsize:(j+1)*gsize], i)
b := getBit(kExt[j*gsize:(j+1)*gsize], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], t[j].data[b])
@@ -359,45 +355,43 @@ func MulTableNoDoubleG2(t []TableG2, k []*big.Int, Q_prev *bn256.G2, gsize int)
R = new(bn256.G2).Add(R, R)
R.Add(R, Q[i-1])
}
if Q_prev != nil {
return R.Add(R, Q_prev)
} else {
return R
if qPrev != nil {
return R.Add(R, qPrev)
}
return R
}
// Compute tables within function. This solution should still be faster than std multiplication
// for gsize = 7
func ScalarMultG2(a []*bn256.G2, k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 {
func scalarMultG2(a []*bn256.G2, k []*big.Int, qPrev *bn256.G2, gsize int) *bn256.G2 {
ntables := int((len(a) + gsize - 1) / gsize)
table := TableG2{}
table := tableG2{}
Q := new(bn256.G2).ScalarBaseMult(new(big.Int))
for i := 0; i < ntables-1; i++ {
table.NewTableG2(a[i*gsize:(i+1)*gsize], gsize, false)
Q = table.MulTableG2(k[i*gsize:(i+1)*gsize], Q, gsize)
table.newTableG2(a[i*gsize:(i+1)*gsize], gsize, false)
Q = table.mulTableG2(k[i*gsize:(i+1)*gsize], Q, gsize)
}
table.NewTableG2(a[(ntables-1)*gsize:], gsize, false)
Q = table.MulTableG2(k[(ntables-1)*gsize:], Q, gsize)
table.newTableG2(a[(ntables-1)*gsize:], gsize, false)
Q = table.mulTableG2(k[(ntables-1)*gsize:], Q, gsize)
if Q_prev != nil {
return Q.Add(Q, Q_prev)
} else {
return Q
if qPrev != nil {
return Q.Add(Q, qPrev)
}
return Q
}
// Multiply scalar by precomputed table of G2 elements without intermediate doubling
func ScalarMultNoDoubleG2(a []*bn256.G2, k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 {
func scalarMultNoDoubleG2(a []*bn256.G2, k []*big.Int, qPrev *bn256.G2, gsize int) *bn256.G2 {
ntables := int((len(a) + gsize - 1) / gsize)
table := TableG2{}
table := tableG2{}
// We need at least gsize elements. If not enough, fill with 0
min_nelems := ntables * gsize
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i := len(k); i < min_nelems; i++ {
k_ext = append(k_ext, new(big.Int).SetUint64(0))
minNElems := ntables * gsize
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
for i := len(k); i < minNElems; i++ {
kExt = append(kExt, new(big.Int).SetUint64(0))
}
// Init Adders
nbitsQ := cryptoConstants.Q.BitLen()
@@ -409,22 +403,22 @@ func ScalarMultNoDoubleG2(a []*bn256.G2, k []*big.Int, Q_prev *bn256.G2, gsize i
// Perform bitwise addition
for j := 0; j < ntables-1; j++ {
table.NewTableG2(a[j*gsize:(j+1)*gsize], gsize, false)
msb := getMsb(k_ext[j*gsize : (j+1)*gsize])
table.newTableG2(a[j*gsize:(j+1)*gsize], gsize, false)
msb := getMsb(kExt[j*gsize : (j+1)*gsize])
for i := msb - 1; i >= 0; i-- {
b := getBit(k_ext[j*gsize:(j+1)*gsize], i)
b := getBit(kExt[j*gsize:(j+1)*gsize], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b])
}
}
}
table.NewTableG2(a[(ntables-1)*gsize:], gsize, false)
msb := getMsb(k_ext[(ntables-1)*gsize:])
table.newTableG2(a[(ntables-1)*gsize:], gsize, false)
msb := getMsb(kExt[(ntables-1)*gsize:])
for i := msb - 1; i >= 0; i-- {
b := getBit(k_ext[(ntables-1)*gsize:], i)
b := getBit(kExt[(ntables-1)*gsize:], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b])
@@ -438,11 +432,10 @@ func ScalarMultNoDoubleG2(a []*bn256.G2, k []*big.Int, Q_prev *bn256.G2, gsize i
R = new(bn256.G2).Add(R, R)
R.Add(R, Q[i-1])
}
if Q_prev != nil {
return R.Add(R, Q_prev)
} else {
return R
if qPrev != nil {
return R.Add(R, qPrev)
}
return R
}
// Return most significant bit position in a group of Big Integers
@@ -450,9 +443,9 @@ func getMsb(k []*big.Int) int {
msb := 0
for _, el := range k {
tmp_msb := el.BitLen()
if tmp_msb > msb {
msb = tmp_msb
tmpMsb := el.BitLen()
if tmpMsb > msb {
msb = tmpMsb
}
}
return msb
@@ -460,11 +453,11 @@ func getMsb(k []*big.Int) int {
// Return ith bit in group of Big Integers
func getBit(k []*big.Int, i int) uint {
table_idx := uint(0)
tableIdx := uint(0)
for idx, el := range k {
b := el.Bit(i)
table_idx += (b << idx)
tableIdx += (b << idx)
}
return table_idx
return tableIdx
}