Merge pull request #11 from iden3/feature/proof-parsers

Add proof parsers to string (decimal & hex)
This commit is contained in:
Eduard S
2020-05-07 12:15:08 +02:00
committed by GitHub
6 changed files with 268 additions and 178 deletions

View File

@@ -467,8 +467,35 @@ func stringToG2(h [][]string) (*bn256.G2, error) {
return p, err
}
// ProofToJson outputs the Proof i Json format
func ProofToJson(p *types.Proof) ([]byte, error) {
// ProofStringToSmartContractFormat converts the ProofString to a ProofString in the SmartContract format in a ProofString structure
func ProofStringToSmartContractFormat(s ProofString) ProofString {
var rs ProofString
rs.A = make([]string, 2)
rs.B = make([][]string, 2)
rs.B[0] = make([]string, 2)
rs.B[1] = make([]string, 2)
rs.C = make([]string, 2)
rs.A[0] = s.A[0]
rs.A[1] = s.A[1]
rs.B[0][0] = s.B[0][1]
rs.B[0][1] = s.B[0][0]
rs.B[1][0] = s.B[1][1]
rs.B[1][1] = s.B[1][0]
rs.C[0] = s.C[0]
rs.C[1] = s.C[1]
rs.Protocol = s.Protocol
return rs
}
// ProofToSmartContractFormat converts the *types.Proof to a ProofString in the SmartContract format in a ProofString structure
func ProofToSmartContractFormat(p *types.Proof) ProofString {
s := ProofToString(p)
return ProofStringToSmartContractFormat(s)
}
// ProofToString converts the Proof to ProofString
func ProofToString(p *types.Proof) ProofString {
var ps ProofString
ps.A = make([]string, 3)
ps.B = make([][]string, 3)
@@ -497,10 +524,55 @@ func ProofToJson(p *types.Proof) ([]byte, error) {
ps.Protocol = "groth"
return ps
}
// ProofToJson outputs the Proof i Json format
func ProofToJson(p *types.Proof) ([]byte, error) {
ps := ProofToString(p)
return json.Marshal(ps)
}
// ParseWitness parses binary file representation of the Witness into the Witness struct
// ProofToHex converts the Proof to ProofString with hexadecimal strings
func ProofToHex(p *types.Proof) ProofString {
var ps ProofString
ps.A = make([]string, 3)
ps.B = make([][]string, 3)
ps.B[0] = make([]string, 2)
ps.B[1] = make([]string, 2)
ps.B[2] = make([]string, 2)
ps.C = make([]string, 3)
a := p.A.Marshal()
ps.A[0] = "0x" + hex.EncodeToString(new(big.Int).SetBytes(a[:32]).Bytes())
ps.A[1] = "0x" + hex.EncodeToString(new(big.Int).SetBytes(a[32:64]).Bytes())
ps.A[2] = "1"
b := p.B.Marshal()
ps.B[0][1] = "0x" + hex.EncodeToString(new(big.Int).SetBytes(b[:32]).Bytes())
ps.B[0][0] = "0x" + hex.EncodeToString(new(big.Int).SetBytes(b[32:64]).Bytes())
ps.B[1][1] = "0x" + hex.EncodeToString(new(big.Int).SetBytes(b[64:96]).Bytes())
ps.B[1][0] = "0x" + hex.EncodeToString(new(big.Int).SetBytes(b[96:128]).Bytes())
ps.B[2][0] = "1"
ps.B[2][1] = "0"
c := p.C.Marshal()
ps.C[0] = "0x" + hex.EncodeToString(new(big.Int).SetBytes(c[:32]).Bytes())
ps.C[1] = "0x" + hex.EncodeToString(new(big.Int).SetBytes(c[32:64]).Bytes())
ps.C[2] = "1"
ps.Protocol = "groth"
return ps
}
// ProofToJsonHex outputs the Proof i Json format with hexadecimal strings
func ProofToJsonHex(p *types.Proof) ([]byte, error) {
ps := ProofToHex(p)
return json.Marshal(ps)
}
// ParseWitnessBin parses binary file representation of the Witness into the Witness struct
func ParseWitnessBin(f *os.File) (types.Witness, error) {
var w types.Witness
r := bufio.NewReader(f)

View File

@@ -172,3 +172,27 @@ func TestParseWitnessBin(t *testing.T) {
testCircuitParseWitnessBin(t, "circuit1k")
testCircuitParseWitnessBin(t, "circuit5k")
}
func TestProofSmartContractFormat(t *testing.T) {
proofJson, err := ioutil.ReadFile("../testdata/circuit1k/proof.json")
require.Nil(t, err)
proof, err := ParseProof(proofJson)
require.Nil(t, err)
pS := ProofToString(proof)
pSC := ProofToSmartContractFormat(proof)
assert.Nil(t, err)
assert.Equal(t, pS.A[0], pSC.A[0])
assert.Equal(t, pS.A[1], pSC.A[1])
assert.Equal(t, pS.B[0][0], pSC.B[0][1])
assert.Equal(t, pS.B[0][1], pSC.B[0][0])
assert.Equal(t, pS.B[1][0], pSC.B[1][1])
assert.Equal(t, pS.B[1][1], pSC.B[1][0])
assert.Equal(t, pS.C[0], pSC.C[0])
assert.Equal(t, pS.C[1], pSC.C[1])
assert.Equal(t, pS.Protocol, pSC.Protocol)
pSC2 := ProofStringToSmartContractFormat(pS)
assert.Equal(t, pSC, pSC2)
}

View File

@@ -1,16 +1,17 @@
package prover
import (
"math/big"
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
cryptoConstants "github.com/iden3/go-iden3-crypto/constants"
"math/big"
)
type TableG1 struct {
type tableG1 struct {
data []*bn256.G1
}
func (t TableG1) GetData() []*bn256.G1 {
func (t tableG1) getData() []*bn256.G1 {
return t.data
}
@@ -21,31 +22,31 @@ func (t TableG1) GetData() []*bn256.G1 {
// Table[3] = a[0]+a[1]
// .....
// Table[(1<<gsize)-1] = a[0]+a[1]+...+a[gsize-1]
func (t *TableG1) NewTableG1(a []*bn256.G1, gsize int, toaffine bool) {
func (t *tableG1) newTableG1(a []*bn256.G1, gsize int, toaffine bool) {
// EC table
table := make([]*bn256.G1, 0)
// We need at least gsize elements. If not enough, fill with 0
a_ext := make([]*bn256.G1, 0)
a_ext = append(a_ext, a...)
aExt := make([]*bn256.G1, 0)
aExt = append(aExt, a...)
for i := len(a); i < gsize; i++ {
a_ext = append(a_ext, new(bn256.G1).ScalarBaseMult(big.NewInt(0)))
aExt = append(aExt, new(bn256.G1).ScalarBaseMult(big.NewInt(0)))
}
elG1 := new(bn256.G1).ScalarBaseMult(big.NewInt(0))
table = append(table, elG1)
last_pow2 := 1
lastPow2 := 1
nelems := 0
for i := 1; i < 1<<gsize; i++ {
elG1 := new(bn256.G1)
// if power of 2
if i&(i-1) == 0 {
last_pow2 = i
elG1.Set(a_ext[nelems])
lastPow2 = i
elG1.Set(aExt[nelems])
nelems++
} else {
elG1.Add(table[last_pow2], table[i-last_pow2])
elG1.Add(table[lastPow2], table[i-lastPow2])
// TODO bn256 doesn't export MakeAffine function. We need to fork repo
//table[i].MakeAffine()
}
@@ -60,7 +61,7 @@ func (t *TableG1) NewTableG1(a []*bn256.G1, gsize int, toaffine bool) {
t.data = table
}
func (t TableG1) Marshal() []byte {
func (t tableG1) Marshal() []byte {
info := make([]byte, 0)
for _, el := range t.data {
info = append(info, el.Marshal()...)
@@ -70,43 +71,42 @@ func (t TableG1) Marshal() []byte {
}
// Multiply scalar by precomputed table of G1 elements
func (t *TableG1) MulTableG1(k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 {
func (t *tableG1) mulTableG1(k []*big.Int, qPrev *bn256.G1, gsize int) *bn256.G1 {
// We need at least gsize elements. If not enough, fill with 0
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
for i := len(k); i < gsize; i++ {
k_ext = append(k_ext, new(big.Int).SetUint64(0))
kExt = append(kExt, new(big.Int).SetUint64(0))
}
Q := new(bn256.G1).ScalarBaseMult(big.NewInt(0))
msb := getMsb(k_ext)
msb := getMsb(kExt)
for i := msb - 1; i >= 0; i-- {
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
Q = new(bn256.G1).Add(Q, Q)
b := getBit(k_ext, i)
b := getBit(kExt, i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q.Add(Q, t.data[b])
}
}
if Q_prev != nil {
return Q.Add(Q, Q_prev)
} else {
return Q
if qPrev != nil {
return Q.Add(Q, qPrev)
}
return Q
}
// Multiply scalar by precomputed table of G1 elements without intermediate doubling
func MulTableNoDoubleG1(t []TableG1, k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 {
func mulTableNoDoubleG1(t []tableG1, k []*big.Int, qPrev *bn256.G1, gsize int) *bn256.G1 {
// We need at least gsize elements. If not enough, fill with 0
min_nelems := len(t) * gsize
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i := len(k); i < min_nelems; i++ {
k_ext = append(k_ext, new(big.Int).SetUint64(0))
minNElems := len(t) * gsize
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
for i := len(k); i < minNElems; i++ {
kExt = append(kExt, new(big.Int).SetUint64(0))
}
// Init Adders
nbitsQ := cryptoConstants.Q.BitLen()
@@ -118,10 +118,10 @@ func MulTableNoDoubleG1(t []TableG1, k []*big.Int, Q_prev *bn256.G1, gsize int)
// Perform bitwise addition
for j := 0; j < len(t); j++ {
msb := getMsb(k_ext[j*gsize : (j+1)*gsize])
msb := getMsb(kExt[j*gsize : (j+1)*gsize])
for i := msb - 1; i >= 0; i-- {
b := getBit(k_ext[j*gsize:(j+1)*gsize], i)
b := getBit(kExt[j*gsize:(j+1)*gsize], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], t[j].data[b])
@@ -137,45 +137,43 @@ func MulTableNoDoubleG1(t []TableG1, k []*big.Int, Q_prev *bn256.G1, gsize int)
R.Add(R, Q[i-1])
}
if Q_prev != nil {
return R.Add(R, Q_prev)
} else {
return R
if qPrev != nil {
return R.Add(R, qPrev)
}
return R
}
// Compute tables within function. This solution should still be faster than std multiplication
// for gsize = 7
func ScalarMultG1(a []*bn256.G1, k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 {
func scalarMultG1(a []*bn256.G1, k []*big.Int, qPrev *bn256.G1, gsize int) *bn256.G1 {
ntables := int((len(a) + gsize - 1) / gsize)
table := TableG1{}
table := tableG1{}
Q := new(bn256.G1).ScalarBaseMult(new(big.Int))
for i := 0; i < ntables-1; i++ {
table.NewTableG1(a[i*gsize:(i+1)*gsize], gsize, false)
Q = table.MulTableG1(k[i*gsize:(i+1)*gsize], Q, gsize)
table.newTableG1(a[i*gsize:(i+1)*gsize], gsize, false)
Q = table.mulTableG1(k[i*gsize:(i+1)*gsize], Q, gsize)
}
table.NewTableG1(a[(ntables-1)*gsize:], gsize, false)
Q = table.MulTableG1(k[(ntables-1)*gsize:], Q, gsize)
table.newTableG1(a[(ntables-1)*gsize:], gsize, false)
Q = table.mulTableG1(k[(ntables-1)*gsize:], Q, gsize)
if Q_prev != nil {
return Q.Add(Q, Q_prev)
} else {
return Q
if qPrev != nil {
return Q.Add(Q, qPrev)
}
return Q
}
// Multiply scalar by precomputed table of G1 elements without intermediate doubling
func ScalarMultNoDoubleG1(a []*bn256.G1, k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 {
func scalarMultNoDoubleG1(a []*bn256.G1, k []*big.Int, qPrev *bn256.G1, gsize int) *bn256.G1 {
ntables := int((len(a) + gsize - 1) / gsize)
table := TableG1{}
table := tableG1{}
// We need at least gsize elements. If not enough, fill with 0
min_nelems := ntables * gsize
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i := len(k); i < min_nelems; i++ {
k_ext = append(k_ext, new(big.Int).SetUint64(0))
minNElems := ntables * gsize
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
for i := len(k); i < minNElems; i++ {
kExt = append(kExt, new(big.Int).SetUint64(0))
}
// Init Adders
nbitsQ := cryptoConstants.Q.BitLen()
@@ -187,22 +185,22 @@ func ScalarMultNoDoubleG1(a []*bn256.G1, k []*big.Int, Q_prev *bn256.G1, gsize i
// Perform bitwise addition
for j := 0; j < ntables-1; j++ {
table.NewTableG1(a[j*gsize:(j+1)*gsize], gsize, false)
msb := getMsb(k_ext[j*gsize : (j+1)*gsize])
table.newTableG1(a[j*gsize:(j+1)*gsize], gsize, false)
msb := getMsb(kExt[j*gsize : (j+1)*gsize])
for i := msb - 1; i >= 0; i-- {
b := getBit(k_ext[j*gsize:(j+1)*gsize], i)
b := getBit(kExt[j*gsize:(j+1)*gsize], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b])
}
}
}
table.NewTableG1(a[(ntables-1)*gsize:], gsize, false)
msb := getMsb(k_ext[(ntables-1)*gsize:])
table.newTableG1(a[(ntables-1)*gsize:], gsize, false)
msb := getMsb(kExt[(ntables-1)*gsize:])
for i := msb - 1; i >= 0; i-- {
b := getBit(k_ext[(ntables-1)*gsize:], i)
b := getBit(kExt[(ntables-1)*gsize:], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b])
@@ -216,11 +214,10 @@ func ScalarMultNoDoubleG1(a []*bn256.G1, k []*big.Int, Q_prev *bn256.G1, gsize i
R = new(bn256.G1).Add(R, R)
R.Add(R, Q[i-1])
}
if Q_prev != nil {
return R.Add(R, Q_prev)
} else {
return R
if qPrev != nil {
return R.Add(R, qPrev)
}
return R
}
/////
@@ -228,11 +225,11 @@ func ScalarMultNoDoubleG1(a []*bn256.G1, k []*big.Int, Q_prev *bn256.G1, gsize i
// TODO - How can avoid replicating code in G2?
//G2
type TableG2 struct {
type tableG2 struct {
data []*bn256.G2
}
func (t TableG2) GetData() []*bn256.G2 {
func (t tableG2) getData() []*bn256.G2 {
return t.data
}
@@ -244,31 +241,31 @@ func (t TableG2) GetData() []*bn256.G2 {
// .....
// Table[(1<<gsize)-1] = a[0]+a[1]+...+a[gsize-1]
// TODO -> toaffine = True doesnt work. Problem with Marshal/Unmarshal
func (t *TableG2) NewTableG2(a []*bn256.G2, gsize int, toaffine bool) {
func (t *tableG2) newTableG2(a []*bn256.G2, gsize int, toaffine bool) {
// EC table
table := make([]*bn256.G2, 0)
// We need at least gsize elements. If not enough, fill with 0
a_ext := make([]*bn256.G2, 0)
a_ext = append(a_ext, a...)
aExt := make([]*bn256.G2, 0)
aExt = append(aExt, a...)
for i := len(a); i < gsize; i++ {
a_ext = append(a_ext, new(bn256.G2).ScalarBaseMult(big.NewInt(0)))
aExt = append(aExt, new(bn256.G2).ScalarBaseMult(big.NewInt(0)))
}
elG2 := new(bn256.G2).ScalarBaseMult(big.NewInt(0))
table = append(table, elG2)
last_pow2 := 1
lastPow2 := 1
nelems := 0
for i := 1; i < 1<<gsize; i++ {
elG2 := new(bn256.G2)
// if power of 2
if i&(i-1) == 0 {
last_pow2 = i
elG2.Set(a_ext[nelems])
lastPow2 = i
elG2.Set(aExt[nelems])
nelems++
} else {
elG2.Add(table[last_pow2], table[i-last_pow2])
elG2.Add(table[lastPow2], table[i-lastPow2])
// TODO bn256 doesn't export MakeAffine function. We need to fork repo
//table[i].MakeAffine()
}
@@ -283,7 +280,7 @@ func (t *TableG2) NewTableG2(a []*bn256.G2, gsize int, toaffine bool) {
t.data = table
}
func (t TableG2) Marshal() []byte {
func (t tableG2) Marshal() []byte {
info := make([]byte, 0)
for _, el := range t.data {
info = append(info, el.Marshal()...)
@@ -293,43 +290,42 @@ func (t TableG2) Marshal() []byte {
}
// Multiply scalar by precomputed table of G2 elements
func (t *TableG2) MulTableG2(k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 {
func (t *tableG2) mulTableG2(k []*big.Int, qPrev *bn256.G2, gsize int) *bn256.G2 {
// We need at least gsize elements. If not enough, fill with 0
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
for i := len(k); i < gsize; i++ {
k_ext = append(k_ext, new(big.Int).SetUint64(0))
kExt = append(kExt, new(big.Int).SetUint64(0))
}
Q := new(bn256.G2).ScalarBaseMult(big.NewInt(0))
msb := getMsb(k_ext)
msb := getMsb(kExt)
for i := msb - 1; i >= 0; i-- {
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
Q = new(bn256.G2).Add(Q, Q)
b := getBit(k_ext, i)
b := getBit(kExt, i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q.Add(Q, t.data[b])
}
}
if Q_prev != nil {
return Q.Add(Q, Q_prev)
} else {
return Q
if qPrev != nil {
return Q.Add(Q, qPrev)
}
return Q
}
// Multiply scalar by precomputed table of G2 elements without intermediate doubling
func MulTableNoDoubleG2(t []TableG2, k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 {
func mulTableNoDoubleG2(t []tableG2, k []*big.Int, qPrev *bn256.G2, gsize int) *bn256.G2 {
// We need at least gsize elements. If not enough, fill with 0
min_nelems := len(t) * gsize
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i := len(k); i < min_nelems; i++ {
k_ext = append(k_ext, new(big.Int).SetUint64(0))
minNElems := len(t) * gsize
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
for i := len(k); i < minNElems; i++ {
kExt = append(kExt, new(big.Int).SetUint64(0))
}
// Init Adders
nbitsQ := cryptoConstants.Q.BitLen()
@@ -341,10 +337,10 @@ func MulTableNoDoubleG2(t []TableG2, k []*big.Int, Q_prev *bn256.G2, gsize int)
// Perform bitwise addition
for j := 0; j < len(t); j++ {
msb := getMsb(k_ext[j*gsize : (j+1)*gsize])
msb := getMsb(kExt[j*gsize : (j+1)*gsize])
for i := msb - 1; i >= 0; i-- {
b := getBit(k_ext[j*gsize:(j+1)*gsize], i)
b := getBit(kExt[j*gsize:(j+1)*gsize], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], t[j].data[b])
@@ -359,45 +355,43 @@ func MulTableNoDoubleG2(t []TableG2, k []*big.Int, Q_prev *bn256.G2, gsize int)
R = new(bn256.G2).Add(R, R)
R.Add(R, Q[i-1])
}
if Q_prev != nil {
return R.Add(R, Q_prev)
} else {
return R
if qPrev != nil {
return R.Add(R, qPrev)
}
return R
}
// Compute tables within function. This solution should still be faster than std multiplication
// for gsize = 7
func ScalarMultG2(a []*bn256.G2, k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 {
func scalarMultG2(a []*bn256.G2, k []*big.Int, qPrev *bn256.G2, gsize int) *bn256.G2 {
ntables := int((len(a) + gsize - 1) / gsize)
table := TableG2{}
table := tableG2{}
Q := new(bn256.G2).ScalarBaseMult(new(big.Int))
for i := 0; i < ntables-1; i++ {
table.NewTableG2(a[i*gsize:(i+1)*gsize], gsize, false)
Q = table.MulTableG2(k[i*gsize:(i+1)*gsize], Q, gsize)
table.newTableG2(a[i*gsize:(i+1)*gsize], gsize, false)
Q = table.mulTableG2(k[i*gsize:(i+1)*gsize], Q, gsize)
}
table.NewTableG2(a[(ntables-1)*gsize:], gsize, false)
Q = table.MulTableG2(k[(ntables-1)*gsize:], Q, gsize)
table.newTableG2(a[(ntables-1)*gsize:], gsize, false)
Q = table.mulTableG2(k[(ntables-1)*gsize:], Q, gsize)
if Q_prev != nil {
return Q.Add(Q, Q_prev)
} else {
return Q
if qPrev != nil {
return Q.Add(Q, qPrev)
}
return Q
}
// Multiply scalar by precomputed table of G2 elements without intermediate doubling
func ScalarMultNoDoubleG2(a []*bn256.G2, k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 {
func scalarMultNoDoubleG2(a []*bn256.G2, k []*big.Int, qPrev *bn256.G2, gsize int) *bn256.G2 {
ntables := int((len(a) + gsize - 1) / gsize)
table := TableG2{}
table := tableG2{}
// We need at least gsize elements. If not enough, fill with 0
min_nelems := ntables * gsize
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i := len(k); i < min_nelems; i++ {
k_ext = append(k_ext, new(big.Int).SetUint64(0))
minNElems := ntables * gsize
kExt := make([]*big.Int, 0)
kExt = append(kExt, k...)
for i := len(k); i < minNElems; i++ {
kExt = append(kExt, new(big.Int).SetUint64(0))
}
// Init Adders
nbitsQ := cryptoConstants.Q.BitLen()
@@ -409,22 +403,22 @@ func ScalarMultNoDoubleG2(a []*bn256.G2, k []*big.Int, Q_prev *bn256.G2, gsize i
// Perform bitwise addition
for j := 0; j < ntables-1; j++ {
table.NewTableG2(a[j*gsize:(j+1)*gsize], gsize, false)
msb := getMsb(k_ext[j*gsize : (j+1)*gsize])
table.newTableG2(a[j*gsize:(j+1)*gsize], gsize, false)
msb := getMsb(kExt[j*gsize : (j+1)*gsize])
for i := msb - 1; i >= 0; i-- {
b := getBit(k_ext[j*gsize:(j+1)*gsize], i)
b := getBit(kExt[j*gsize:(j+1)*gsize], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b])
}
}
}
table.NewTableG2(a[(ntables-1)*gsize:], gsize, false)
msb := getMsb(k_ext[(ntables-1)*gsize:])
table.newTableG2(a[(ntables-1)*gsize:], gsize, false)
msb := getMsb(kExt[(ntables-1)*gsize:])
for i := msb - 1; i >= 0; i-- {
b := getBit(k_ext[(ntables-1)*gsize:], i)
b := getBit(kExt[(ntables-1)*gsize:], i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b])
@@ -438,11 +432,10 @@ func ScalarMultNoDoubleG2(a []*bn256.G2, k []*big.Int, Q_prev *bn256.G2, gsize i
R = new(bn256.G2).Add(R, R)
R.Add(R, Q[i-1])
}
if Q_prev != nil {
return R.Add(R, Q_prev)
} else {
return R
if qPrev != nil {
return R.Add(R, qPrev)
}
return R
}
// Return most significant bit position in a group of Big Integers
@@ -450,9 +443,9 @@ func getMsb(k []*big.Int) int {
msb := 0
for _, el := range k {
tmp_msb := el.BitLen()
if tmp_msb > msb {
msb = tmp_msb
tmpMsb := el.BitLen()
if tmpMsb > msb {
msb = tmpMsb
}
}
return msb
@@ -460,11 +453,11 @@ func getMsb(k []*big.Int) int {
// Return ith bit in group of Big Integers
func getBit(k []*big.Int, i int) uint {
table_idx := uint(0)
tableIdx := uint(0)
for idx, el := range k {
b := el.Bit(i)
table_idx += (b << idx)
tableIdx += (b << idx)
}
return table_idx
return tableIdx
}

View File

@@ -4,10 +4,11 @@ import (
"bytes"
"crypto/rand"
"fmt"
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
"math/big"
"testing"
"time"
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
)
const (
@@ -60,31 +61,31 @@ func TestTableG1(t *testing.T) {
for gsize := 2; gsize < 10; gsize++ {
ntables := int((n + gsize - 1) / gsize)
table := make([]TableG1, ntables)
table := make([]tableG1, ntables)
for i := 0; i < ntables-1; i++ {
table[i].NewTableG1(arrayG1[i*gsize:(i+1)*gsize], gsize, true)
table[i].newTableG1(arrayG1[i*gsize:(i+1)*gsize], gsize, true)
}
table[ntables-1].NewTableG1(arrayG1[(ntables-1)*gsize:], gsize, true)
table[ntables-1].newTableG1(arrayG1[(ntables-1)*gsize:], gsize, true)
beforeT = time.Now()
Q2 := new(bn256.G1).ScalarBaseMult(new(big.Int))
for i := 0; i < ntables-1; i++ {
Q2 = table[i].MulTableG1(arrayW[i*gsize:(i+1)*gsize], Q2, gsize)
Q2 = table[i].mulTableG1(arrayW[i*gsize:(i+1)*gsize], Q2, gsize)
}
Q2 = table[ntables-1].MulTableG1(arrayW[(ntables-1)*gsize:], Q2, gsize)
Q2 = table[ntables-1].mulTableG1(arrayW[(ntables-1)*gsize:], Q2, gsize)
fmt.Printf("Gsize : %d, TMult time elapsed: %s\n", gsize, time.Since(beforeT))
beforeT = time.Now()
Q3 := ScalarMultG1(arrayG1, arrayW, nil, gsize)
Q3 := scalarMultG1(arrayG1, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMult time elapsed (inc table comp): %s\n", gsize, time.Since(beforeT))
beforeT = time.Now()
Q4 := MulTableNoDoubleG1(table, arrayW, nil, gsize)
Q4 := mulTableNoDoubleG1(table, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMultNoDouble time elapsed: %s\n", gsize, time.Since(beforeT))
beforeT = time.Now()
Q5 := ScalarMultNoDoubleG1(arrayG1, arrayW, nil, gsize)
Q5 := scalarMultNoDoubleG1(arrayG1, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMultNoDouble time elapsed (inc table comp): %s\n", gsize, time.Since(beforeT))
if bytes.Compare(Q1.Marshal(), Q2.Marshal()) != 0 {
@@ -119,31 +120,31 @@ func TestTableG2(t *testing.T) {
for gsize := 2; gsize < 10; gsize++ {
ntables := int((n + gsize - 1) / gsize)
table := make([]TableG2, ntables)
table := make([]tableG2, ntables)
for i := 0; i < ntables-1; i++ {
table[i].NewTableG2(arrayG2[i*gsize:(i+1)*gsize], gsize, false)
table[i].newTableG2(arrayG2[i*gsize:(i+1)*gsize], gsize, false)
}
table[ntables-1].NewTableG2(arrayG2[(ntables-1)*gsize:], gsize, false)
table[ntables-1].newTableG2(arrayG2[(ntables-1)*gsize:], gsize, false)
beforeT = time.Now()
Q2 := new(bn256.G2).ScalarBaseMult(new(big.Int))
for i := 0; i < ntables-1; i++ {
Q2 = table[i].MulTableG2(arrayW[i*gsize:(i+1)*gsize], Q2, gsize)
Q2 = table[i].mulTableG2(arrayW[i*gsize:(i+1)*gsize], Q2, gsize)
}
Q2 = table[ntables-1].MulTableG2(arrayW[(ntables-1)*gsize:], Q2, gsize)
Q2 = table[ntables-1].mulTableG2(arrayW[(ntables-1)*gsize:], Q2, gsize)
fmt.Printf("Gsize : %d, TMult time elapsed: %s\n", gsize, time.Since(beforeT))
beforeT = time.Now()
Q3 := ScalarMultG2(arrayG2, arrayW, nil, gsize)
Q3 := scalarMultG2(arrayG2, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMult time elapsed (inc table comp): %s\n", gsize, time.Since(beforeT))
beforeT = time.Now()
Q4 := MulTableNoDoubleG2(table, arrayW, nil, gsize)
Q4 := mulTableNoDoubleG2(table, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMultNoDouble time elapsed: %s\n", gsize, time.Since(beforeT))
beforeT = time.Now()
Q5 := ScalarMultNoDoubleG2(arrayG2, arrayW, nil, gsize)
Q5 := scalarMultNoDoubleG2(arrayG2, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMultNoDouble time elapsed (inc table comp): %s\n", gsize, time.Since(beforeT))
if bytes.Compare(Q1.Marshal(), Q2.Marshal()) != 0 {

View File

@@ -87,25 +87,25 @@ func GenerateProof(pk *types.Pk, w types.Witness) (*types.Proof, []*big.Int, err
for _cpu, _ranges := range ranges(pk.NVars, numcpu) {
// split 1
go func(cpu int, ranges [2]int) {
proofA[cpu] = ScalarMultNoDoubleG1(pk.A[ranges[0]:ranges[1]],
proofA[cpu] = scalarMultNoDoubleG1(pk.A[ranges[0]:ranges[1]],
w[ranges[0]:ranges[1]],
proofA[cpu],
gsize)
proofB[cpu] = ScalarMultNoDoubleG2(pk.B2[ranges[0]:ranges[1]],
proofB[cpu] = scalarMultNoDoubleG2(pk.B2[ranges[0]:ranges[1]],
w[ranges[0]:ranges[1]],
proofB[cpu],
gsize)
proofBG1[cpu] = ScalarMultNoDoubleG1(pk.B1[ranges[0]:ranges[1]],
proofBG1[cpu] = scalarMultNoDoubleG1(pk.B1[ranges[0]:ranges[1]],
w[ranges[0]:ranges[1]],
proofBG1[cpu],
gsize)
min_lim := pk.NPublic+1
minLim := pk.NPublic + 1
if ranges[0] > pk.NPublic+1 {
min_lim = ranges[0]
minLim = ranges[0]
}
if ranges[1] > pk.NPublic + 1 {
proofC[cpu] = ScalarMultNoDoubleG1(pk.C[min_lim:ranges[1]],
w[min_lim:ranges[1]],
if ranges[1] > pk.NPublic+1 {
proofC[cpu] = scalarMultNoDoubleG1(pk.C[minLim:ranges[1]],
w[minLim:ranges[1]],
proofC[cpu],
gsize)
}
@@ -142,7 +142,7 @@ func GenerateProof(pk *types.Pk, w types.Witness) (*types.Proof, []*big.Int, err
for _cpu, _ranges := range ranges(len(h), numcpu) {
// split 2
go func(cpu int, ranges [2]int) {
proofC[cpu] = ScalarMultNoDoubleG1(pk.HExps[ranges[0]:ranges[1]],
proofC[cpu] = scalarMultNoDoubleG1(pk.HExps[ranges[0]:ranges[1]],
h[ranges[0]:ranges[1]],
proofC[cpu],
gsize)